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Objective:User safety and the quality of diagnostics on the epilepsymonitoring unit (EMU) depend on reaction to
seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the
added value above staff response is unclear. We ascertained the added value of two electroencephalograph
(EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time.
Methods: EEG-video seizure recordings of people admitted to an EMU over one year were included, with a max-
imum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA
Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive
rateswere estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted
to the EMU.
Results: EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and
of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epi-
lepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking
time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected sei-
zures. The full recordings included 617 h of EEG. Encevis had amedian false positive rate of 4.9 per 24 h and BESA
Epilepsy of 2.1 per 24 h.
Conclusions: EEG-video seizure detection algorithms may improve reaction to seizures by improving the total
number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical sit-
uation. Implementation of these algorithms might result in faster diagnostic testing and better observation dur-
ing seizures.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Video-EEG monitoring in an epilepsy monitoring unit (EMU) is
widely used as a diagnostic tool in people suspected of having a seizure
disorder. It can be used to determine seizure type and classification, to
distinguish epilepsy from nonepileptic seizures, or to examine or evalu-
ate therapeutic options [1,2]. People are continuously monitored by
staff in a separate observation room, using real-time video, audio, and
EEG recordings. When seizures are detected, nursing staff enter the
subject's room to reduce the risk of adverse events such as falls, respira-
tory compromise, and injuries [3]. Standardized tests are alsoperformed
to assess consciousness and cognition during seizures, which helps to
determine seizure semiology and type [4,5].

Staff supervision demands skills and uninterrupted attentive obser-
vation for any sign of a seizure, as otherwise, they may be missed. One
fddorp, The Netherlands.
fxoc@sein.nl (F. Cox),
study showed a response rate of 41% to seizures with a mean latency
over 2 min [6]. While response rate and time may vary between EMUs,
response rates are limited by human abilities. Seizures are often recog-
nized by clinical manifestations, so seizures showing subtle, clinical se-
miology or none are more often missed.

Online seizure detection algorithms might help detecting seizures
that could have otherwise been missed or recognized too late. Seizures
can be detectedwith a variety of signals, such as movement, electroder-
mal activity, heart rate, and EEG. We focused on EEG seizure detection
as it is closest to the source of epilepsy, specific to epilepsy, and mea-
sured as standard on every EMU. EEG seizure detection has been
ascertained since 1982, and much research has since been performed
on various approaches to seizure detection [7–10].

Recently, EEG seizure detection software, such as Encevis EpiScan
and BESA Epilepsy, has become commercially available. Encevis EpiScan
uses two modules, which detect epileptiform activity [11,12]. To detect
seizures, the extracted features are continuously comparedwith past in-
formation from the EEG. The BESA Epilepsy software estimates normal-
ized energy and integrated power for different frequency bands [13,14].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.yebeh.2018.04.026&domain=pdf
https://doi.org/10.1016/j.yebeh.2018.04.026
gvisser@sein.nl
Journal logo
https://doi.org/10.1016/j.yebeh.2018.04.026
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/yebeh


100 N. Rommens et al. / Epilepsy & Behavior 84 (2018) 99–104
This algorithm is based on the hypothesis that seizure activitymanifests
itself by a change in frequency and amplitude that is distinct from
nonseizure or background activity. When extracted features are above
a threshold for longer than 10 s, a seizure is detected. The algorithm
has been developed and tested for adults.

EEG detection algorithms have been studied thoroughly and show
good sensitivity and low false response rates in detecting epileptic sei-
zures [8,9]. For Encevis EpiScan a sensitivity of 81%with a false-detection
rate of 0.30 per hour has been reported [15]; BESA Epilepsywas reported
to have sensitivity of 87%with a false-detection rate of 0.22 per hour [14].
It is, however, unclearwhat added value the seizure detection algorithms
provide to EMU seizure monitoring, as these algorithms are not widely
implemented [16]. It is important to know the added value, as seizure
detection systems are not standalone but aids for staff already present.
We investigate this added value by assessing the following: 1) the cur-
rent response rate and latency of staff to seizures; 2) the sensitivity, la-
tency, and false positive rates of Encevis EpiScan and BESA Epilepsy;
3) the value added to the current response in terms of additional de-
tected seizures and shorter latency; and 4)whichmonitoring could ben-
efit from these algorithms.

2. Methods

2.1. EMU setting

The added value of a detection algorithm depends on the work set-
ting and the staffing; to allow comparisons, we describe here our setting:
It is an 8-bed unit, where each individual stays in a separate room, for up
to 5 days. Three to four remote control cameras are installed in each
room to capture the whole room. Individuals have call buttons to alert
staff.

Subjects are monitored continuously by staff (specialized nurses) in
an observation room, where a real-time EEG, electrocardiogram (ECG),
video, and audio stream is shown for each room. An intercom system
can be used for communication. When a seizure is noticed, the subject
is attended to ensure safety and execute standardized diagnostic tests.
Three nurses are present during the daytime and two during the
night. No automated seizure detection techniques are used.

2.2. EEG recordings

A Micromed EEG system (Micromed, Mogliano Veneto, Italy) was
used to record EEGswith a sampling frequency of 256Hz, in a frequency
band of 0.01 to 1000 Hz. The international 10–20 electrode placement
systemwas used. Some individuals had additional electrodes to provide
higher spatial sampling. After recording and reporting, it is standard
practice to cut EEG and video files to decrease storage space. Only diag-
nostically relevant parts of the registration, for example diagnostic tests
and seizures, are stored.

2.3. Data selection

Seizures between May 2014 and April 2015 were included retro-
spectively in a seizure database. Only seizures confirmed as epileptic
in the corresponding EEG report and longer than 5 s were included. To
prevent overrepresentation only two seizures per subject were in-
cluded. If more than two seizures were present two of the first five
were randomly selected. It's important to perform diagnostic tests in
these initial seizures, so staff response is required; this might not be
the case for later seizures. The seizure database encompasses a repre-
sentative sample of all seizure types occurring in the EMU. Seizures
where staff was already present at the start of the seizure were ex-
cluded, as response could not be evaluated. Seizures where the patient
alerted the staff were not excluded. Call buttons will not be removed
from clinics when using EEG-based seizure detection and is therefore
an important addition to visual recognition of seizures by staff. The
EEG file duration of the seizures could vary depending on how files
were cut.

An additional database (the 24-hour database) consisted of nonstop
EEG recordings without selection was created. These recordings repre-
sent the complete setting on an EMU and can therefore be used to calcu-
late false positives. The 24-hour database included recordings of 30
consecutive recordings from September 2016. For every subject, 16 to
24 consecutive hours of the recording were randomly included.

This study was carried out in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki) for experi-
ments involving humans.
2.4. Scoring of the registrations

Seizures' start and end in both databases were identified by trained
reviewers. Four different time points were scored: clinical seizure onset
(CSO), clinical seizure end (CSE), electrographic seizure onset (ESO),
and electrographic seizure end (ESE), as can be seen in Fig. 1. The ESO
was defined as the moment where the first EEG seizure pattern could
be seen and the ESE where it ends. The CSO was defined as the start of
the first clinical symptom. The CSE was defined as the time when sub-
jects were able to resume normal activities, as up to that point, it is of
value to respond to seizures. The CSO–CSE periodmay therefore include
postictal symptoms.

For the seizure database, the electrographic and clinical seizures
characteristics were also scored to evaluate how easily changes could
be detected by an observer. Both sets of characteristics were scored
using values between 1 and 4, representing no visible manifestations
(1) to very clear manifestations (4) from the perspective of the nurses
who monitor the subjects. The characteristics were scored every 5 s
until staff responded, up to the first 60 s of the seizure. From these
scores, a mean value was calculated. Seizure classification was also col-
lected from EEG reports.

The interictal EEG in the 24-hour database was evaluated to investi-
gate whether epileptiform activity would influence the false positive
rate. Four categories were used: ‘Normal interictal EEG’, ‘Abnormal
interictal EEG with nonspecific nonepileptiform abnormalities’, ‘EEG
with some epileptiform abnormalities’, and ‘EEGwith frequent epilepti-
form abnormalities’, based on the EEG report.

Staff response was evaluated by retrospectively reviewing the
videos from the seizure database. A response was defined as staff enter-
ing the room of the subject or using the intercom any time from the sei-
zure onset until 10 s after the end of the seizure (when EEG and clinical
manifestations have both stopped).

All recordings were retrospectively analyzed using Encevis EpiScan
and BESA Epilepsy. The detection algorithms should operate the same
in an online situation, but due to unavailability of online functioning
this could not be tested.
2.5. Sensitivity

We calculated the detection sensitivity of staff, Encevis EpiScan, and
BESA Epilepsy. A correct detection was defined as detection within the
period from 10 s before the start of a seizure (CSO or ESO) to 10 s
after the end of a seizure (ESE or CSE) (Fig. 1).
2.6. Latency

Latency of staff, Encevis EpiScan, and BESA Epilepsy were calculated
from electrographic seizure onset (ESO). For BESA Epilepsy, 10 s were
added to account for the delay in the algorithm's online functioning;
the algorithm places detection markers at seizure onset after having
registered 10 s of the seizure. Median latencies and p5–p95 percentile
ranges of the latencies were calculated.



Fig. 1. Visualization of timing of a seizure, which might vary between subjects. CSO (clinical seizure onset), CSE (clinical seizure end), ESO (electrographic seizure onset), and ESE
(electrographic end) were scored for every seizure. A correct detection was defined as detection within the 10 s before the start of the seizure until 10 s after the end of the seizure.
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2.7. False positives

The false positive rate of Encevis EpiScan and BESA Epilepsy was cal-
culated on the 24-hour database. A false positive is defined as a detec-
tion that does not take place during a seizure, i.e., beyond 10 s before
the start of a seizure (CSO or ESO) and 10 s after the last end (ESE or
CSE). When a false positive occurred, a black-out period of 10 s was de-
fined, inwhichnonew false positives could occur. Themedian false pos-
itive rate and percentile ranges p5–p95 were calculated.

2.8. Statistical analysis

The difference in sensitivity between seizure characteristics (adult-
hood, seizure classification, clinical characteristics, and electrographic
characteristics) (separately for staff, Encevis EpiScan, and BESA Epi-
lepsy) were tested for statistical significance with a Chi-square test. If
a characteristic could not be determined, the recording would be re-
moved from this analysis.

We also assessed the effect of subject age and the amount of
interictal abnormalities in the EEG on the false positive rate with a
Kruskal–Wallis test. The significance level was set at p ≤ 0.05. All analy-
ses were performed using MATLAB (R2017a, The MathWorks Inc.).

3. Results

In total, 188 seizures in 115 subjects were included in the seizure da-
tabase and 617 h of 30 subjects in the 24-hour database. Themean age in
the seizure database was 28.7 years (SD 17 years) and was 24.2 years
(SD 15.5 years) in the 24-hour database. Included seizures were general-
ized onset seizures (9.6%), focal onset seizureswith temporal lobe semiol-
ogy (42.6%), focal onset seizures with extratemporal lobe semiology
(45.7%), and seizures that could not be classified (2.1%).

3.1. Sensitivity

The sensitivity of staff, Encevis EpiScan, and BESA Epilepsy are
shown in Table 1. Of 62 seizures missed by staff, 41 were recognized
by Encevis EpiScan and 24 by BESA Epilepsy. Sixteen seizures were rec-
ognized only by staff. The comparison of sensitivity of Encevis EpiScan
Table 1
Performance of staff, Encevis EpiScan, and BESA Epilepsy. Sensitivity, median latency of
detection from the start in the EEG (ESO), and median false positives per 24 h is shown.
For BESA Epilepsy, 10 s was added to account for the delay in the algorithm's online
functioning.

Staff Encevis EpiScan BESA Epilepsy

Sensitivity 67.0% 77.6% 65.4%
Median latency of detections
in seconds (p5 to p95)

31 (−5 to 98) 10 (−4 to 50) 14 (6 to 68)

Median false positives per
24 h (p5 to p95)

– 4.9 (1.2 to 13.8) 2.1 (0 to 222.7)
and BESA Epilepsy for all seizures and all seizures undetected by staff
are shown in Fig. 2. The influence of different seizure characteristics
on the sensitivity are shown in Table 2.

3.2. Latency

Median latency with p5 and p95 are shown in Table 1. Fig. 3 shows
the time of detection of Encevis EpiScan and BESA Epilepsy compared
to staff latency. In 83.5% of the 103 seizures detected by staff and Encevis
EpiScan, the algorithm detected the seizure faster than the staff re-
sponse. In 81.6% of the 98 seizures detected by staff and BESA Epilepsy,
the algorithm detected the seizure faster than the staff response. This
would lead to a median improvement of 18.1 s for Encevis EpiScan
and a median improvement of 15.6 s for BESA Epilepsy. When
correcting for walking time of 10 s from the observation room to the
subject, Encevis EpiScan was still faster in 65.0% of detected seizures
and BESA Epilepsy in 65.3% of detected seizures.

3.3. False positives

The median false positive rates can be seen in Table 1, and a histo-
gram of the false positive rates per subject is shown in Fig. 4. Encevis
EpiScan had low false positive rates for almost every subject. BESA Epi-
lepsy had zero false positives for most subjects but also some outliers
with many false positives. Most false positives with Encevis EpiScan oc-
curred during thefirst hours. This is probably due to a learningperiod, in
which the algorithmneeds to establish a baseline. If the alarmof Encevis
EpiScan was turned off during the first hour, the false positive rate
would decrease by 36.4% and by 46.1% if it were turned off for the first
2 h.

Children had a higher false positive rate than adults for Encevis
EpiScan (p = 0.0430), with a median false positive rate of 6.99 per
24 h for children and 4.47 per 24 h for adults. The difference in false pos-
itive rate between the abnormalities in the interictal EEGwas not statis-
tically significant.

BESA Epilepsy also had a higher false positive rate in children than in
adults (p = 0.0057), with a median false positive rate of 39.1 per 24 h
for children and 1.28 per 24 h for adults. Additionally, EEGs with fre-
quent epileptiform abnormalities had a significantly (p = 0.0308)
higher false positive rate, with a median false positive rate of 33.1 per
24 h (compared to 1.16–9.86 for EEGs with fewer abnormalities).

4. Discussion

Reaction to seizures can be improved by online EEG seizure detec-
tion algorithms by improving the number of detected seizures and the
response latency after start of a seizure. We were able to show that
more than half of the undetected seizures could be recognized by EEG
seizure detection algorithms. For most seizures the detections by both
algorithms preceded detection by staff. The algorithms had acceptable
median false positive rates.



Fig. 2. Overall sensitivity of seizure detection algorithms Encevis EpiScan & BESA Epilepsy on all 188 seizures (A) and sensitivity for seizures missed by staff (B).
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The staff response and latency that we found is better than previ-
ously described where a response rate of 41% with an average latency
of 142.3 s has been shown [6]. This may be due to differences between
EMU settings, e.g., staff experience or EMU layout. The sensitivity and
specificity of the algorithms that we described are comparable with
those from previous reports [14,15]. Latency has not been previously
described. The added value above staff already present has not previ-
ously been reported. This information is key, since a seizure detection
algorithm will not be a stand-alone system but an addition to current
staff.

Staff response and sensitivity of detection algorithms are influenced
by seizures and individual characteristics. When there is a low staff re-
sponse rate but algorithms are able to detect seizures, people could par-
ticularly benefit from these algorithms. Staff response was highly
dependent on clinical characteristics as response is based on symptoms
seen on the video stream. Conversely, algorithms were mostly depen-
dent on the presence of electrographic changes. This influence is also
reflected in the sensitivity for different seizure classifications. For exam-
ple, generalized seizures are electrographically and clinically very clear
and therefore have a high response rate by staff and algorithms. Focal
onset seizures with extra-temporal lobe semiology, on the other hand,
were short with few clinical and electrographic changes and therefore
have a lower response rate by staff and algorithms. Thus, people with
less clear seizures showing electrographic changes could benefit from
Table 2
Sensitivity of staff, Encevis EpiScan, and BESA Epilepsy for different characteristics of seizures. Th
detection method with a Chi-square test. Values under the significance level (p ≤ 0.05) are pres
further analysis.

All subjects
Age Children under 18 year (n = 54)

Adults (n = 134)
Seizure classification Generalized onset (n = 18)

Focal onset seizures Temporal (n = 80)
Extratemporal (n = 86)

Unclear classification (n = 4)
Clinical characteristics No visible changes (n = 27)

Subtle clinical symptoms (n = 119)
Clear clinical symptoms (n = 34)
Very clear clinical symptoms (n = 8)

Electrographic characteristics No visible changes (n = 6)
Subtle changes (n = 73)
Clear focal changes (n = 73)
Clear diffuse changes (n = 36)
these algorithms. In particular, seizures with temporal lobe semiology
had low staff sensitivity but a high sensitivity on the algorithms. Chil-
drenmight benefit from seizure detection algorithms, as staff sensitivity
was lower in children. A higher false positive rate was, however, found
for children. This might be due to variations in EEG patterns in children,
making it more challenging to differentiate normal EEG from ictal pat-
terns [17]. Children in our dataset more often had EEG abnormalities,
which also influenced the specificity of the algorithms. Encevis EpiScan
still had an acceptable false positive rate for childrenmaking itmore ap-
propriate than BESA Epilepsy for children, which had not previously
been tested in children.

There are a number of limitations to our study. The algorithms could
not be tested online, as at the time of the study they were not ready for
online implementation. Therefore, the true effect of these algorithms
could not be assessed. Two different databases were also used to test
the sensitivity and false positive rates of the algorithms. Testing sensi-
tivity and false positive rates in the same full recordings would provide
a better validation of the algorithms, allowing estimation of the false
positives relative to the true positives. Additionally, performance has
been tested on preselected data files. A dataset of full recordings includ-
ing all type of seizures was not available at the time of the study. This
study did not include any nonepileptic events. These events cannot be
detected by EEG-based algorithms. However, research has shown a
higher response rate of staff to psychogenic nonepileptic seizures,
e difference in sensitivity for specific characteristics was tested for statistical difference per
ented in bold. If a characteristic could not be determined, these would be removed before

Staff Encevis EpiScan BESA Epilepsy

Sensitivity p-Value Sensitivity p-Value Sensitivity p-Value

67.0% – 77.6% – 65.4% –
59.3% 0.03 79.6% 0.68 72.2% 0.21
70.1% 76.9% 62.7%
88.9% 0.004 100% b0.001 100% b0.001
75.0% 86.3% 71.3%
55.8% 64.0% 53.5%
– – –
37.0% b0.001 85.2% 0.51 66.7% 0.31
67.2% 77.3% 61.3%
82.4% 70.6% 73.5%
100% 87.5% 87.5%
66.7% 0.03 66.7% b0.001 0% b0.001
54.8% 58.9% 39.7%
72.6% 89.0% 83.6%
80.6% 94.4% 91.7%



Fig. 3. Time of detection of the algorithms is shown compared to staff latency (0 s) for the seizures that were detected by the algorithm and staff. For BESA Epilepsy, 10 s was added to
account for the delay in the algorithm's online functioning. An extra red line is drawn to take walking time of staff into account (10 s). Some outliers could not be shown in the figure;
for Encevis EpiScan this was −1579,−611 and − 215 s and for BESA Epilepsy this was −552, −253, 309, 392 and 3173 s. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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compared to epileptic seizures [18]. Lastly, staff response can vary be-
tween different EMU settings. Depending on how staff are trained and
subjects are monitored, the response rate may differ. Since lower re-
sponse rates were found in another center, the added value in other
centers might be higher than we described [6].

Future research should focus on testing these algorithms online on
continuous unselected data. Additionally, performance of EEG seizure
detection algorithmsmight increase when usingmultisensor seizure de-
tection.We do not see substantial benefit from addingmovement-based
sensors or electromyographic sensors. These detectors perform best on
tonic–clonic seizures or hypermotor seizures, which are already recog-
nized by staff and algorithms. There might be an improvement when
adding ECG seizure detection. Heart rate changes occur in all type of sei-
zures andmostly in the beginning or even before electrographic start of a
seizure [19,20]. Adding this type of seizuremight increase sensitivity and
latency, but more research on this topic is necessary.
5. Conclusions

Online EEG seizure detection algorithms can improve the staff re-
sponse to seizures by detecting additional seizures and improving la-
tency. The false positive rate is reasonable for use in a clinical setting.
Implementation of these algorithms may help to ensure patient safety
Fig. 4. Distribution of quantity of false positives for all subjects. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
and improve the quality of diagnostics by assessing consciousness and
cognition in a timely manner.
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