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Summary
Aim of the study. — A novel method for removal of artifacts from long-term EEGs was developed
and evaluated. The method targets most types of artifacts and works without user interaction.
Materials and methods. — The method is based on a neurophysiological model and utilizes an
iterative Bayesian estimation scheme. The performance was evaluated by two independent
reviewers. From 48 consecutive epilepsy patients, 102 twenty-second seizure onset EEGs were
used to evaluate artifacts before and after artifact removal and regarding the erroneous atten-
uation of true EEG patterns.
Results. — The two reviewers found ‘‘major improvements’’ in 59% and 49% of the EEG epochs
respectively, and ‘‘minor improvements’’ in 38% and 47% of the epochs, respectively. The answer
‘‘similar or worse’’ was chosen only in 0% and 4%, respectively. Neither of the reviewers found
‘‘major attenuations’’, i.e., a significant attenuation of significant EEG patterns. Most EEG
epochs were found to be either ‘‘mostly preserved’’ or ‘‘all preserved’’. A ‘‘minor attenuation’’

was found only in 0% and 17%, respectively.
Conclusions. — The proposed artifact removal algorithm effectively removes artifacts from EEGs
and improves the readability of EEGs impaired by artifacts. Only in rare cases did the algorithm
slightly attenuate EEG patterns, but the clear visibility of significant patterns was preserved
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in all cases of this study. Current artifact removal methods work either semi-automatically
or with insufficient reliability for clinical use, whereas the ‘‘PureEEG’’ method works fully
automatically and leaves true EEG patterns unchanged with a high reliability.
© 2014 Elsevier Masson SAS. All rights reserved.
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Résumé
But de l’étude. — Une nouvelle méthode de suppression automatique d’artefacts dans les enreg-
istrements électroencéphalographiques de longue durée a été évaluée. La méthode supprime
la plupart des artefacts et fonctionne sans interaction de la part de l’utilisateur.
Méthodes. — La méthode est basée sur un modèle neurophysiologique et utilise un schéma
itératif d’estimation bayésienne. La performance de l’algorithme a été évaluée par deux experts
indépendants utilisant 102 enregistrements d’EEG ictal. Les experts ont évalué l’EEG avant et
après la suppression d’artefacts en prêtant attention à une éventuelle atténuation du signal
EEG d’origine cérébrale.
Résultats. — Les experts ont trouvé chacun dans 97 % et 96 % des cas une « amélioration consi-
dérable » ou une « amélioration faible » de l’EEG. La réponse « similaire ou pire » n’a été choisie
que dans 0 % et 4 % des cas. Aucune « atténuation majeure » n’a été remarquée. La plupart
des enregistrements ont eu l’appréciation « préservé en grande partie » et « complètement
préservé ». Une « faible atténuation » n’a été trouvée que dans 0 % et 17 % des cas.
Conclusions. — Les méthodes actuelles de suppression d’artefacts ne fonctionnent que semi-
automatiquement ou ne sont pas assez fiables pour les applications cliniques. La méthode
proposée ici, « PureEEG », fonctionne tout à fait automatiquement et préserve de manière
fiable le signal EEG d’origine cérébrale. PureEEG supprime efficacement les artefacts dans les
enregistrements EEG et améliore la lisibilité des EEG altérés par des artefacts. L’algorithme
n’atténue le signal EEG d’origine cérébrale que dans de rares cas. En même temps, la visibilité
est préservée dans tous les cas de cette étude.
© 2014 Elsevier Masson SAS. Tous droits réservés.
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ntroduction

he electroencephalogram (EEG) is an important modality in
he diagnosis of neurological disorders and the investigation
f the functional properties of the brain. Unfortunately, EEG
ecordings are commonly contaminated by artifacts, poten-
ials that do not originate from the brain but from various
ther sources [21,23]. Non-physiologic artifacts originate
rom various sources of electrical fields causing interference
n the frequency band of EEGs. These sources include mains
lectricity noise at a frequency of 50 or 60 Hz, depending
n the geographic region. Electric fields in external elec-
ronic devices, like mobile phones or implanted devices, like
ardiac pacemakers also cause interference at frequencies
elevant for EEGs. High-amplitude artifacts are often due
o electromechanic machines, such as ventilators, feeding
r infusion pumps or intravenous drips. The most com-
on artifacts are caused by a faulty electrical connection

f the electrodes and the skin of the patient [17], which
s frequently a problem in long-term recordings. Patient
ovements often temporarily compromise this electrode-

kin connection, giving rise to complex artifacts in the EEG.
second large group of artifacts have a physiologic ori-

in. These comprise in particular ocular artifacts due to eye
links and eye movements, which can be recognized by their
haracteristic waveforms and potential distributions in the
EG or by co-registration of an electrooculogram. Tempo-

alis and frontalis muscles are the major source of myogenic
rtifacts, which may completely obscure an EEG recording
ue to their broad frequency spectrum and high amplitudes.

l
v
a

rtifacts with a physiological origin also include cardiac arti-
acts, which can be identified by their correlation with the
lectrocardiogram, and also artifacts due to a cranial bone
efect causing the so-called breach effect.

Although EEG artifacts may also give useful information,
.g. about the patient’s state of vigilance or the occurrence
f myoclonic jerks, they often lead to misinterpretation
f the EEG as epileptiform, prompting incorrect treatment
1,22]. In addition to potential misinterpretation, artifacts
ften make EEGs difficult to analyze or even hardly read-
ble, a problem that is particularly present in long-term
ecordings from epilepsy or ICU monitoring.

Correct identification of artifacts and interpretation of
EGs require application of EEG recording concepts [23].
igital EEG and software-based review allow for post-hoc
requency filtering and montage selection, which might
elp to interpret impaired recordings. Artifact reduction
sing frequency filtering however requires that significant
EG patterns and artifacts are spectrally separate. Post-hoc
ontages may help if, e.g., a common reference electrode

s impaired by artifacts.
The conventional post-hoc filtering and montage tech-

iques are well established for clinical EEG review, but
hey have only a limited artifact-reducing power and must
e adjusted frequently when recording conditions, artifact
ypes and EEG patterns change. Numerous, more sophisti-
ated computational methods have been proposed in the

iterature, aiming to identify, reduce or remove artifacts of
arious types from EEG recordings. The majority of these
lgorithms are based on blind source separation methods
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assume that spectral cross-correlations are approximately
zero, i.e. Cêj (v, v ′) ∼= ıv,v ′Cêj (v), Cêa (v, v ′) ∼= ıv,v ′Cêa (v), and
Cn̂ (v, v ′) ∼= ıv,v ′Cn̂ (v). For discrete cosine transforms, this
assumption would be exact for 1st-order Markov processes

1 E() denotes the expected value of an expression. Fur-
thermore, we introduce the notations �x (t) � E (x (t))
and Cx,y (t, t′) � E (x (t)) − �x (t)

(
yT (t′) − �T

y (t′)
)

for the
cross-correlation of vector-valued processes x(t) and y(t), fur-
PureEEG: Automatic EEG artifact removal for epilepsy moni

[4,8], where the EEG is assumed to be a linear superposition
of a number of components that can be divided into true
EEG components and artifacts. In an unmixing step, sep-
arate components are calculated, artifactual components
are identified and set to zero, and the remaining compo-
nents are superimposed again leading to an EEG that should
represent the true EEG without artifacts. The unmixing is
typically based on Independent Component Analysis [11,24]
and Principal Component Analysis [10,19]. The major draw-
back of these methods is that artifactual components must
be identified, which is a non-trivial task for computational
algorithms and usually has to be done manually by human
experts. Fully automated procedures for artifact rejection
have been proposed only rarely in the literature [13,14]. An
interesting, spatio-temporal method is called Adaptive Fil-
tering by Optimal Projection [2,3], which was evaluated very
recently in [15] on a large dataset including 144 EEGs from
epilepsy patients.

The major contribution of this article is a completely
novel approach proposed for fully automatic artifact
removal, called PureEEG. The major intention of the pro-
posed method is to support the visual analysis of long-term
EEG recordings. PureEEG rejects numerous types of arti-
facts that frequently obscure long-term recordings and
impede their interpretation. More precisely, it targets arti-
facts that do not coincide with a spatio-temporal correlation
pattern of an EEG of cerebral origin, which particularly
includes artifacts due to myogenic contractions, faulty
electrode-to-patient connections, patient movements and
most non-physiologic sources. The method works fully auto-
matically and without any patient-individual parameter
adjustments, which also makes it well adapted as a pre-
processor for all types of computational EEG analyses, such
as electrical source imaging, automatic spike and seizure
detection, or evoked potential analyses.

The algorithm is based on a neurophysiological signal
model, which includes one term representing the pure EEG,
which originates from cerebral sources only, and one term
representing a wide range of artifacts. The model character-
izes spatio-temporal correlations of the EEG and utilizes a
Bayesian minimum mean squared error (MMSE) estimator for
the separation of pure EEG components and artifactual com-
ponents. An effective, iterative procedure is proposed for
the critical characterization of a priori knowledge required
by Bayesian estimators. In contrast to conventional fre-
quency filtering, which operates in the spectral domain,
and methods like Independent Component Analysis [24] and
Principal Component Analysis [10], which operate in the spa-
tial domain, the proposed approach separates the pure EEG
and the artifacts in the spatio-spectral domain. The advan-
tage is a high degree of freedom, which allows artifacts to
be more accurately isolated and more precisely separated
from the EEG, with only very low distortions of the pure EEG
components.

The proposed method was developed as a pre-processor
for computational analyses of EEGs from critically ill
patients. In this article, it is shown that it yields a signif-
icant value for epilepsy monitoring units. We present the
results of a validation study for visual review of ictal EEG
recordings, which was accomplished by two independent

reviewers using data from 102 seizures from 48 epilepsy
patients.
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aterials and methods

patio-temporal EEG signal model

he proposed method, PureEEG, is based on a stochas-
ic, spatio-temporal model for EEGs, which are impaired
y artifacts. The model includes K channels of digital EEG
ecordings, represented by length-K EEG vectors e(t) with
iscrete time indices t. The EEG vectors e(t) are decom-
osed into a superposition of three components,

(t) = ej (t) + ea(t) + n(t) (1)

here the pure EEG vectors ej(t) represent ‘‘true EEG’’ con-
ributions from cerebral sources, the EEG artifact vectors
a(t) represent artifactual contributions caused by various
ypes of artifact sources, and the noise vectors n(t) contain
oise due to amplification and analog-to-digital conversion
nd residual modeling errors.

The PureEEG artifact separation algorithm is based on
linear minimum mean square error (MMSE) estimator.

his type of estimators requires a priori knowledge of
econd-order moments of observations and parameters to
e estimated: it seems to be an obvious assumption, that
he three components pure EEG ej, artifacts a, and noise
are uncorrelated, meaning that their covariance is zero.

urthermore, it can be assumed, due to common high-pass
lters in conventional EEG recording hardware, that all com-
onents are also zero-mean.

The full characterization of second-order moments in
quation (1) would include all spatial and temporal cross-
orrelations, given by Cej (t, t′).1 However, this would lead
o a computationally expensive MMSE estimator that could
e hardly calculated in an acceptable amount of time for
ommonly used sampling rates and channel numbers. A sig-
ificant reduction in complexity can be achieved, if the
EG is transformed into the frequency domain denoted
y ê (v) � �e (v). We used a discrete cosine transform,
hich for real-valued EEGs has the advantage to be real-
alued in the transform domain. Certainly, a discrete Fourier
ransform could also be used, which led to very simi-
ar results in our experiments. The frequency transform
an be applied in the context of the overlap-add method
16], such that all assumptions and approximations must
e valid only within each window separately. We applied
he overlap-add method using Hamming windows and a
istance of 1.5 seconds between succeeding frames. The
inearity of � allows to transform each component sepa-
ately, i.e., (1) can be written in the frequency domain as
(v) = êj (v) + êa (v) + n (v). In the frequency domain, we
hermore, Cx (t, t′) � Cx,x (t, t′) for the autocorrelation x(t) and
x (t) � Cx (t, t) for the covariance matrix of x(t).
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25] and asymptotically exact for finite-order Markov pro-
esses [7]. These are equivalent to processes obtained from
utoregressive models, which have frequently been used in
EG signal processing methods [20]. Due to this simplifica-
ion, the statistical characterization reduces to knowledge
f covariance matrices Cêj (v) for the pure EEG vectors,
êa (v) for the EEG artifact vectors, and Cn̂ (v) for the noise
ectors.

Characterization of the pure EEG component ej can be
ased either on artifact-free EEG data or on a suitable data
odel. Artifact-free data can be cut into a sufficient number

f samples and transformed into frequency domain in order
o calculate, e.g., sample covariance matrices. It is possible
o calculate specific covariance matrices for each individ-
al subject, or averaged covariance matrices by mixing data
amples from different subjects.

For the model-based approach, we make use of concepts
stablished in the field of electrical source imaging. The
ask of calculating electrical sources corresponding to given
otentials on the scalp, the so-called inverse solution, is typ-
cally based on a forward model, i.e., a linear mapping from
ource dipoles or source current distributions to electrical
otentials on the electrode positions on the scalp. A forward
odel of this type will be used here for the characterization

f spatial correlations of scalp potentials. Electrical source
ipoles modeling EEG patterns of true cerebral origin are
ssumed to be uniformly distributed within a pre-defined
rain-volume. The vector j(t) includes all current densities
epresented by electrical dipoles at time t, which cause
lectrical potentials on the electrodes, denoted by pj(t).
description of this relation is given by the linear equation

j(t) = Lj (t) (2)

here L is the so-called lead field matrix. Calculating suit-
ble head models in terms of source spaces and lead field
atrices has been treated extensively in the source imag-

ng literature [12], where inverse problems are often poorly
onditioned and strongly influenced by the forward model.
n the algorithm proposed here, sources will not be localized
nd systems of equations will typically be well-conditioned.
he choice of a specific method to determine a head model

s therefore less important.
Each channel of an EEG recording is a difference of two

lectrode potentials. The pure EEG vectors ej(t) can thus be
ritten as

j (t) = Mpj (t) (3)

here M is the K × L montage matrix, where each row
epresents an EEG channel and has ‘‘+1’’ and ‘‘−1’’ in
he columns corresponding to the positive and the nega-
ive input electrodes, respectively. Since each EEG channel
equires at least two input electrodes, the number of rows in

(i.e., the number of EEG channels) is typically lower than
he number of columns (i.e., the number of electrodes).
omputational re-referencing to a new reference or a com-
on average reference could also be incorporated into the
atrix M. However, this results in a rank-reduction of M

nd subsequently in a performance degradation of the arti-

act removal algorithm. Data should therefore always be
sed as recorded, without any post-processing. It should
lso be noted that M includes information about the refer-
nce electrode position, which unfortunately is not always

e
r
a
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ocumented in common EEG file formats. If the reference
lectrode position is not available, one can assume an
‘infinitely remote’’ position, corresponding to an all-zero
ow in the lead field matrix L, albeit with a decreased arti-
act removing performance.

Combination and frequency transformation of (2) and (3)
esults in êĴ (v) = MLĴ (v), i.e., the correlation matrix of

ˆĴ (v) can be written as

ê (v) = MLCĴ (v) LT MT (4)

ith a correlation matrix CĴ (v) of source current densities
. It is assumed for simplicity that CĴ (v) can be separated
nto a product

Ĵ (v) = Ct

Ĵ
(v) Cs

Ĵ
(5)

here ct

Ĵ
(v) and Cs

Ĵ
characterize temporal and spatial corre-

ations, respectively. This means that scalar function ct

Ĵ
(v),

hich defines the frequency-spectrum of j, is independent
f the spatial position of a source dipole, i.e., all cere-
ral source dipoles are modeled with the same frequency
pectrum. Conversely, the matrix Cs

Ĵ
is modeled constant

or all frequencies v. This simplifying assumption will not
e met in general. However, it leads to a significant reduc-
ion of the number of degrees of freedom in the model,
hich is important for the stability of the iterative prior esti-
ation algorithm introduced in Subsection Iterative prior

stimation. The second term to be characterized in the
ecomposition model (1) is the EEG artifact vector ea. For
his term, a simple model can thus be written as

a (t) = Ma (t) (6)

here M is the montage matrix introduced in (3), and a(t) is
length-L artifact vector that models all artifacts occurring
t one or more electrodes. The montage matrix M in (6)
ncorporates the effects of artifacts on different electrodes:
n contrast to normal electrodes affecting single channels,
n artifact on a common reference electrode usually impairs
ll channels. In the frequency domain the correlation matrix
êa (v) can be written as

êa (v) = MCâ (v) MT (7)

The correlation matrix Câ (v) is not known and hard to be
haracterized. It can be assumed however that the entries
f a are uncorrelated, since many artifacts might be repre-
ented by single, independent components in a. This implies
hat Câ (v) can be assumed to be diagonal matrices. For
he determination of the values of the diagonal elements,
owever, we refer to the iterative algorithm in Subsec-
ion Iterative prior estimation. The uncorrelated-property
f artifactual components can be approximately justified for
umerous artifact types, like those caused by faulty elec-
rode connections and EMG artifacts. At least one can say
hat their cross-correlations are significantly smaller com-
ared to the cross-correlations of the components in EEGs of
erebral origin. Note however that this assumption leads to
n imperfect model for artifacts caused by eye blinks or eye
ovements, which typically show strong correlations across
lectrodes. As a consequence, ocular artifacts will hardly be
emoved by the proposed algorithm. For an artifact removal
lgorithm used for visual EEG review, this drawback should
e acceptable, since ocular artifacts are most often easily
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recognized by an experienced EEG reviewer. Ocular artifacts
usually do not significantly impair the visual interpretation
of EEGs.

The third term to be characterized in model (1) is the
noise vector n. It is assumed that the single entries in n are
uncorrelated and that the noise is white with variance �2

n.
This results in a noise correlation matrix Cn̂ (v) = �2

n I.

MMSE artifact separation

Based on the EEG signal model introduced in Subsection
Spatio-temporal EEG signal model, the pure EEG ej can
be separated from artifacts ea using a linear minimum
mean square error (MMSE) estimator, which might be the
most important type of Bayesian estimators [9]. The lin-
ear MMSE estimator e∗

j (t) minimizes the mean squared

error ε � E

{∥∥e∗
j (t) − ej (t)

∥∥2
}

and due to the assumption

of uncorrelated pure EEG ej, artifacts a, and noise n, it can
be written as

e∗
j (t) = �+ (

CêjC
−1
ê

ê
)

(t) (8)

with an inverse frequency transform denoted by �+ (·), the
frequency domain EEG vector ê(v) and its correlation matrix
given by the sum

Cê (v) = Cêj (v) + MCâ (v) MT + �2
n I (9)

where Cêj from equation (4) and Cêa from (7) have been used.
In a similarly way, a linear MMSE estimator for the artifacts
a can be shown to be

a∗ (t) = �+ (
Câ (v) MT C−1

ê

)
(t) (10)

An estimator for the artifact vector ea can easily be calcu-
lated from (10) via multiplication with the montage matrix
M. However, in the following subsection, we will make use
of estimates for the artifact sources a directly rather than
their effect on the EEG ea.

Iterative prior estimation

The MMSE artifact separation method introduced in the pre-
vious subsection is a Bayesian estimator and thus requires
some prior knowledge in terms of correlation matrices.
In addition to the noise variance, these are covariance
matrices of pure EEG sources j and artifact sources a.
In Subsection Spatio-temporal EEG signal model, a spatio-
temporal model for correlations of pure EEG sources was
presented, but a priori artifact sources are unknown. The
following procedure allows to iteratively estimate these
prior information on artifactual components a(t): using ini-
tial values for the artifact source covariance matrices Câ (v),
an estimate a*(t) for the artifact sources can be calculated
using equation (10). From this estimate, a*(t), an improved
covariance matrix Câ (v) can be estimated, which then in
turn again can be used in equation (10) for another update
of the estimate a*(t). This iteration procedure can be con-
tinued until it converges, and finally the pure EEG estimate

e∗

j (t) is calculated via equation (8). The fact that Câ (v) is a
priori unknown can be modelled by choosing very high ini-
tial values. Then, in the first loop of iterations, the MMSE
estimator asymptotically becomes a simple least-squares
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stimator, which does not rely on a priori information [9].
he iterative algorithm quickly ‘‘pulls down’’ the contin-
ously improving estimates for Câ (v). In our experiments,
n numerous EEG samples this procedure always converged
icely after some tens of iterations.

omputational effort

s a tool for the visual analysis of long-term EEG recor-
ings, it is important that the algorithm is computationally
fficient. A reviewer looking through continuous EEG recor-
ings and using an automatic artifact removal tool cannot
ait for several seconds per page. We therefore imple-
ented the PureEEG algorithm using Microsoft Visual C++

010 and Intel’s Math Kernel Library 11.0. The implemen-
ation was furthermore optimized for speed by exploiting
ulti-core processing. The processing time for 10 seconds of

EG with artifacts was measured for various sampling rates
nd channel numbers. The speed tests were executed on
conventional Dell Notebook with an Intel® CoreTM i5 at

.50 GHz with 4 GB RAM and a 64 bit Windows 7 operating sys-
em. We evaluated the relationship between computational
osts and sampling rates and channel numbers respectively.

lgorithm validation

wo EEG experts, an experienced epileptologist and a
hysician assistant with extensive clinical EEG experience
erformed the validation of PureEEG. We used EEGs from
02 seizures recorded during long-term epilepsy monitor-
ng. From a series of 48 patients consecutively admitted to
EG monitoring, we took EEGs from the first three seizures
espectively, which were either clinically or electrograph-
cally visible. Note that some patients had less than three
eizures; the average number of seizures per patient used
or this evaluation was 2.125. None of the validation data
ad been used for algorithm development, i.e., the PureEEG
lgorithm was no more modified after it was applied to these
ata for the first time. Data used for algorithm development
ere taken from different patients from epilepsy monitoring
nits or intensive care units. From each seizure one minute
efore and one minute after, seizure onset were presented
o the reviewers. An epoch of twenty seconds was to be
onsidered for the review. This epoch started five seconds
efore seizure onset and was visually marked in the data.

Reviewers were provided with EEG review software
ith standard features including post-hoc re-referencing,
igh pass-, low pass- and notch filtering. Additionally,
his EEG review software included an implementation of
he introduced PureEEG algorithm and a split-screen func-
ionality, which allowed the reviewers to simultaneously
ee the EEG with and without PureEEG post-processing
espectively. For each twenty-second epoch, the reviewers
ad to evaluate the amount of artifacts before and after
ureEEG processing and the attenuation of EEG patterns
fter PureEEG processing. For each of the three questions,

ne out of four possible answers could be chosen. An almost
quivalent evaluation scheme had been used for the evalu-
tion of an artifact removal method in work of LeVan et al.
11]. The three questions and their possible answers were:
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Table 1 Absolute numbers and proportion of seizures in each scoring category for both reviewers separately.

Reviewer 1 Reviewer 2

n % n %

What is the amount of artifacts before PureEEG processing?
Almost none 12 11.8 3 2.9
Few 18 17.6 15 14.7
Significant 54 52.9 48 47.1
Considerable 18 17.6 36 35.3

What is the amount of artifacts after PureEEG processing?
Mostly removed 3 3.3 0 0.0
Major improvement 53 58.9 49 49.0
Minor improvement 34 37.8 47 47.0
Similar or worse 0 0.0 4 4.0

Are EEG patterns attenuated after PureEEG processing?
All preserved 20 19.6 23 22.5
Mostly preserved 65 63.7 79 77.5
Minor attenuation 17 16.7 0 0.0
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Major attenuation 0 0.

question 1: ‘‘What is the amount of artifacts before
PureEEG processing?’’ The reviewers were instructed to
choose the answer ‘‘Almost none’’, if the amount of
visually identified artifacts was negligible, ‘‘Few’’ if
artifacts did not significantly obscure the EEG activity,
‘‘Significant’’ if a substantial amount of artifacts affected
the EEG, and ‘‘Considerable’’ if a substantial amount of
high-amplitude artifacts greatly affected long periods and
multiple channels of the EEG;
question 2: ‘‘What is the amount of artifacts after
PureEEG processing?’’ Here, the reviewers should choose
the answer ‘‘Mostly removed’’ if almost no artifactual
pattern was remaining, ‘‘Major improvement’’ if previ-
ously obscured EEG patterns became notably easier to
see, ‘‘Minor improvement’’ if previously obscured EEG
patterns became slightly easier to see, and ‘‘Similar or
worse’’ if no previously obscured EEG patterns became
easier to see. If Question 1 had been answered with
‘‘Almost none’’, Question 2 did not have to be answered;
question 3: ‘‘Are EEG patterns attenuated after PureEEG
processing?’’ For this question we allowed the answers
‘‘All preserved’’ if all EEG patterns were preserved,
‘‘Mostly preserved’’ if all significant EEG patterns were
preserved and only insignificant patterns might have been
attenuated, ‘‘Minor attenuation’’ if some significant EEG
pattern was attenuated, but still was clearly visible, and
‘‘Major attenuation’’ if some significant EEG pattern was
significantly attenuated and was no more clearly visible.

esults

xpert validation
he results of the validation by the two reviewers are sum-
arized in Table 1. The two reviewers rated the amount

f artifacts before PureEEG processing as ‘‘significant’’ in
2.9% and 47.1% of the EEG samples, respectively, and as

i
i
e
r

0 0.0

‘considerable’’ in 17.6% and 35.3% respectively, which are
ore than two third of the samples in total. The bar dia-

rams in Fig. 1 illustrate the results of all three questions in
ercent for both reviewers separately.

After processing with PureEEG, a ‘‘major improvement’’
as found by the reviewers in 58.9% and 49.0% of the EEG
pochs respectively, a ‘‘minor improvement’’ in 37.8% and
7.0% of the epochs. The answer ‘‘similar or worse’’ was
hosen only by one reviewer in 4.0% of the samples. One of
he reviewers rated ‘‘mostly removed’’ in 3.3% of the sam-
les (cf. Fig. 1b). Although the algorithm does not remove
rtifacts completely, the quality of most seizure records was
mproved and become easier to interpret. One example for
n EEG with artifacts, which were rated ‘‘significant’’ and
‘considerable’’ by the two reviewers respectively, is shown
n Fig. 2 (top): shortly after seizure onset marked artifacts
over the majority of EEG channels. The resulting EEG after
ureEEG processing can be seen in Fig. 2 (middle), which was
‘‘major improvement’’ according to both reviewers. The

MG activity is strongly attenuated while the rhythmic, ictal
atterns remain almost unaffected and became much easier
o see, in particular in the last seconds of the epoch. In the
pectrograms of channel P7-O1 before and after PureEEG
rocessing at the bottom of Fig. 2 it can be seen that the
trong artifacts in the raw EEG at the end of the epoch are
reatly suppressed after PureEEG processing. Moreover, the
MG artifacts covering high frequencies during the whole
poch are also suppressed by the proposed algorithm. The
hythmic alpha activity on the other hand remains mostly
nchanged, which demonstrates the capability of the algo-
ithm of separating true EEG patterns from artifacts that do
ot exhibit the spatial and spectral properties as prescribed
y the underlying model.

Neither of the reviewers found a ‘‘major attenuation’’,

.e., a significant attenuation of significant EEG patterns
n any of the samples. This is an important result of the
valuation study, meaning that all significant EEG patterns
emained clearly visible after PureEEG processing in all
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Almost 
none

Few Significant Considerable

Reviewer 1 11.8% 17.6% 52.9% 17.6%

Reviewer 2 2.9% 14.7% 47.1% 35.3%

Mostly 
removed

Major 
improvement improvement

Minor Similar or 
worse

Reviewer 1 3.3% 58.9% 37.8% 0.0%

Reviewer 2 0.0% 49.0% 47.0% 4.0%

All 
preserved

Mostly 
preserved

Minor 
a�enua�on

Major 
a�enua�on

Reviewer 1 19.6% 63.7% 16.7% 0.0%

Reviewer 2 22.5% 77.5% 0.0% 0.0%

(a) (b)

(c)
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Figure 1 Bar diagrams illustrating the proporion of seizures in
processing, (b) the amount of artifacts after PureEEG processing

102 samples. One of the reviewers found minor attenu-
ations in 16.7% of the samples. Fig. 3 (top) shows the
EEG of one seizure containing strong artifacts, which cover
large ranges of low- and high frequency bands. In the
EEG resulting from PureEEG processing shown in Fig. 3
(bottom) one reviewer found a minor attenuation, and both
reviewers concluded that there was a major improvement.
This example shows that besides EMG artifacts PureEEG
can simultaneously remove low-frequency artifacts, which
probably have been caused by movements of the patient,
and high-frequency artifacts of myogenic origin, while pre-
serving the EEG to a great extent. The majority of EEG
samples were rated with either ‘‘mostly preserved’’ or ‘‘all
preserved’’. The answer ‘‘mostly preserved’’ was given in
63.7% and 77.5%, respectively, which means that all EEG pat-
terns were preserved, and the answer ‘‘all preserved’’ was
given in 19.6% and 22.5% of the seizures, respectively, which
means that all significant patterns have been preserved.

The improvement of EEG quality due to PureEEG
processing was evaluated within groups of EEGs with equal
rating for the amount of artifacts in the raw EEG. The results
are illustrated in Fig. 4. In the EEGs with considerable arti-
facts, i.e., the strongest level of artifact contamination, the
reviewers found a major improvement or better in 70.4% of
the samples and a minor improvement or less in 29.6% of
the samples. In the EEGs with significant artifact contami-
nation, the PureEEG algorithm was found to make a major
improvement or better in 55.9% of the samples and a minor
improvement or less in 44.1% of the samples. Here, at least

a major improvement was achieved in more than half of
the seizures. In 69.7% of the EEG samples with only few
artifacts, the reviewers found either minor or no improve-
ments, compared to 30.3% where the reviewers found major

C

T
m

scoring category for (a) the amount of artifacts before PureEEG
(c) the attenuation of EEG patterns after PureEEG processing.

mprovements or mostly removed artifacts. This is still an
cceptable result, since in these samples the readability of
he EEG was not significantly impaired even without artifact
emoval. For all EEGs with almost no artifacts, the improve-
ents due to PureEEG obviously were ‘‘minor or less’’.
Improvements achievable in EEGs with only few arti-

acts hence are limited. But for increasing level of artifact
ontamination, where artifact removal becomes more and
ore important for the interpretation of EEGs, the PureEEG

lgorithm clearly improves the readability of an increasing
mount of EEGs.

One ictal EEG epoch containing ocular artifacts due to
ye blinks can be seen in Fig. 5. Moreover, it is affected
y strong artifacts covering a wide range of frequencies at
he begin and at the end of the epoch, a line noise arti-
act on the midline channels Cz-Pz/Pz-Oz, artifacts due to
oving electrodes at right frontal positions, and repeated

rtifactual, very sharp transients at electrode F3. It can be
een, that the ocular artifacts remain mostly unchanged.
his is an expected result, since the spatial correlations of
cular artifacts are closer to that of frontal EEG patterns
han to that modeled by the artifact term in the underly-
ng model of the PureEEG algorithm. The myogenic artifacts
re significantly suppressed, the artifacts on right frontal
lectrodes and on F3 are mostly removed, and also the line
oise, although it is clear that it could also be removed
fficiently using a simple frequency filter.
omputational effort

he processing time for 10 seconds of EEG with artifacts was
easured for sampling rates of 128 Hz, 256 Hz, 512 Hz, and
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Figure 2 EEG sample #23. Significant artifacts in the raw EEG covering a large number of channels and several seconds (top).
After PureEEG processing, a major improvement of the EEG quality and mostly preserved EEG patterns of cerebral origin can be
s ft) an
e ency
a rem

1
n
o
a

een (middle). Spectrogram of P7-O1 for EEG before (bottom le
nd of the epoch, covering all frequencies, and the high-frequ
fter PureEEG processing. The rhythmic alpha activity at ∼ 8 Hz
024 Hz, and for channel numbers of 9, 18, 36, and 72 chan-
els. The results are shown in Table 2, where values between
ne and two seconds (for 10 s EEG) are shaded in light gray,
nd vales above two seconds are shaded in dark gray. In Fig. 6

t
o
i
a

d after (bottom right) PureEEG processing. The artifact at the
artifacts covering the complete epoch are greatly suppressed
ains widely unchanged.
he results are plotted in a line graph with logarithmic scales
n both axes. It can easily be seen that computation time
ncreases with both, sampling rate and channel number. We
lso made a trend analysis, which showed an almost linear
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Figure 3 EEG sample #75. The raw EEG is covered by significant a
PureEEG processing, a major improvement of the EEG quality can be

Table 2 Computation time in seconds for 10 seconds of
EEG, which is about one typical EEG screen, for various samp-
ling rates and channel numbers.

Sampling rate [Hz] Number of channels

9 18 36 72

128 0.082 0.293 0.830 3.915
256 0.218 0.510 1.724 7.740
512 0.470 1.142 3.480 17.032

t
d
(
g
t
t
o
l
c
r
o

D

M

Artifact removal techniques for electroencephalography
1024 0.893 2.225 7.532 36.008

relationship between processing time and sampling rate,
and an increase of processing time with the 1.8th power
of the channel number. The linear dependence of computa-
tional cost and sampling rate could be expected, since the

number of samples is directly related to the number of fre-
quencies v to be considered in the frequency domain. The
dependency of computational costs with the 1.8th power of

h
f
o

rtifacts with low and high frequency components (top). After
seen (bottom).

he number of channels might be a real limitation for high
ensity EEGs. The reason for this can be found in equation
8), where a linear system of equation must be solved, which
rows with the number of channels. It should be noted, that
he absolute numbers clearly depend on the used hardware,
he quality of the implementation, and also on the amount
f artifacts that were to be removed, since the number of
oops to be calculated is not fixed. However, the relation of
omputational costs and sampling rates or channel numbers
emains valid and the evaluation at least demonstrates the
rder of computational costs to be expected.

iscussion

odel-based artifact removal
ave been explored frequently in the literature. The demand
or these techniques is high, since artifacts strongly deteri-
rate EEG review on the one hand and computational EEG



488 M.M. Hartmann et al.

Figure 4 Artifact removal performance for various levels of
artifact in the raw EEG. The more artifacts there are in the
raw EEG, the greater is the improvement achieved by PureEEG.
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Figure 6 Computation time in seconds for 10 seconds of EEG
as a function of the channel number for various sampling rates.
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n 70.4% of EEGs with considerable artifacts, at least a major
mprovement was achieved.

rocessing on the other hand. Simple techniques such as fre-
uency filtering can be used to reduce artifacts in EEGs,
ut their applicability is limited since frequency bands of

rtifacts usually overlap with EEG frequencies. Blind source
eparation (BSS) techniques such as principal component
nalysis [10] and independent component analysis [24] often
ield promising results, but their major drawback is their

E
[
s
t

igure 5 EEG sample #83. The raw EEG is covered by significant ar
rtifacts, and line noise. After PureEEG processing, a major improve
xcept from ocular artifacts, are significantly reduced.
he computational burden of the algorithm strongly depends on
hannel number and sampling rate.

emand for a manual selection of artifactual components
o be removed. A few methods have been developed to
acilitate this manual interaction [11], but fully automatic

EG artifact removal techniques have rarely been proposed
3]. So far, most commercially available EEG processing
oftware does not offer satisfactory artifact removal fea-
ures, although there would be a strong demand for it.

tifact including myogenic artifacts, movement artifacts, ocular
ment of the EEG quality can be seen (bottom). Most artifacts,
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PureEEG: Automatic EEG artifact removal for epilepsy moni

The proposed PureEEG algorithm is a fully automatic
approach. It does not require any user interaction for deter-
mination of artifacts. It is based on a neurophysiological
signal model of EEG and artifacts and exploits knowledge
about the positions of each electrode. Based on this model
the algorithm is able to separate true EEG components from
artifacts. The algorithm takes into account spatio-temporal
correlations known from the model, which enables the sep-
aration of artifacts from pure, cerebral EEG. In contrast to
purely spatial methods such as principal component analy-
sis or independent component analysis [6], the ‘‘unmixing
matrix’’ of the proposed algorithm depends on the fre-
quency. Hence it is able to attenuate artifactual components
only in the frequency range in which they occur, while
EEG components in the same spatial subspace may remain
unchanged in other frequency bands. In contrast, the unmix-
ing matrix of purely spatial methods is always constant over
frequency.

PureEEG exploits spatial correlations that are based on
physiological modeling of the head and the electrodes on
the skin. Temporal correlations of the artifacts are itera-
tively determined by the algorithm. Moreover the model
includes the layout of the electrodes, such that the different
effect of artifacts at normal electrodes in contrast to refer-
ence electrodes is also considered. This high level of details
in the underlying model enables the excellent performance
despite fully automatic operation.

Validation study

In the review of 102 seizures, two independent reviewers did
not find any significant EEG pattern of cerebral origin that
had been significantly attenuated by the PureEEG algorithm,
i.e., all significant EEG patterns remained clearly visible
after automatic artifact removal. This is a very important
finding, since PureEEG is intended as a tool for the review
of clinical EEG recordings. It could lead to misdiagnoses,
if relevant EEG patterns would be missed due to an erro-
neous attenuation of true EEG components. PureEEG is also
intended as a pre-processor for computational EEG analyses,
where an irreversible attenuation of significant EEG patterns
would deteriorate the accuracy of computational results. In
the validation study the two reviewers found at least a major
improvement due to PureEEG in 62.2% and 49% of the EEGs,
respectively. One of the reviewers found at least a minor
improvement in 100%, the second reviewer in 96% of the
samples. Bearing in mind, that all significant EEG patterns
remained clearly visible in 100% of the samples, the algo-
rithm is a valuable tool for EEG review and reliably improves
the quality of EEGs deteriorated by artifacts. After evalua-
tion of 102 seizures, one of the reviewers summarized his
impression of PureEEG as ‘‘a very good tool that will give
an added value to clinical practice’’, and with PureEEG he
‘‘could better recognize the first ictal EEG changes’’ as com-
pared to without PureEEG ‘‘in the vast majority of EEGs’’.

The automatic artifact removal algorithm proposed by
LeVan and Gotman [11] was evaluated using the same proto-

col, such that a comparison of the two algorithms is possible
in principle. However, it must be taken into account, that an
evaluation by reviewers includes a strong subjective compo-
nent and the validation datasets were not equal, such that
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omparisons must be made cautiously. One noticeable dif-
erence is, that the artifact removal was rated ‘‘similar or
orse’’ in 25% of the seizures for the algorithm by LeVan,
nd in 0% and 4% of the seizures for the PureEEG algorithm.
‘‘major attenuation’’ of true EEG patterns was found in

one of the seizures with the PureEEG algorithm, but in 4%
ith LeVan’s algorithm. On the other hand it is remarkable,

hat LeVan’s algorithm preserved all true EEG patterns in
2.5% of the seizures, compared to the PureEEG algorithm,
hich preserved all true EEG patterns 20% and 22.5% of the

eizures. Beyond the results of the validation it should be
oted, that in contrast to LeVan’s method the algorithm
ntroduced here does not rely on training data, but on a
europhysiological model. The advantage hereby is that it
oes not require a new training if, e.g., the recording mon-
age is changed. Due to the underlying model, which also
ncludes the recording setup, the proposed algorithm auto-
atically adapts to changes of the used electrode positions,
ontages, or sampling rates.
The proposed algorithm effectively removes several

ypes of artifacts. This includes artifacts, which are char-
cterized by clearly different spatio-temporal correlation
atterns compared to true EEG activity of cerebral origin.
his includes in particular artifacts of myogenic origin, due
o faulty electrode connections, or electrode movements.
n contrast, ocular artifacts are usually left unchanged. The
eason for this is, that the potentials caused by eye move-
ents or eye blinks exhibit spatial correlation patterns that

re close to that of EEGs from frontal sources. For removal
f ocular artifacts, BSS techniques have been shown to be
ffective [18], although they require relatively high signal-
o-noise ratios [5]. The proposed algorithm however could
e extended by additional components covering additional
lasses of artifacts.

omputational complexity

n important factor for the usability of an artifact removal
lgorithm is its computational burden. The acceptance of
n artifact removal tool for EEG review could suffer sig-
ificantly, if reviewers had to wait for several seconds for
ach EEG screen to be calculated. In our implementation,
or standard EEG recordings with electrodes from the 10/20-
ystem and a sampling rate of 256 Hz the algorithm required
.5 seconds for processing 10 seconds of EEG, which clearly
s an acceptable value. If the sampling rate is increased to
12 Hz, one has to wait for 1.14 seconds per screen, which
ill be acceptable for most users, but for even higher samp-

ing rates, users would probably activate the algorithm only
n demand, i.e., only when an EEG epoch is contaminated
ith strong artifacts impairing its readability. If the number
f channels is increased to 36, the algorithm calculates for
.72 seconds per screen. This might be still an acceptable
alue, but an additional increase of the channel number
o 72, resulting in a computation time of more than seven
econds would be unfeasible for calculation on demand. In
his case, and also in the case of very high sampling rates, a

easible operation mode could be to pre-calculate the arti-
act separation, although this would significantly increase
emory demands. It should be noted however, that the tar-

eted field of application is long-term monitoring, where
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rtifacts are a major problem, but high density EEGs will
robably remain an exception in the near future.

onclusions

he proposed PureEEG artifact removal algorithm effec-
ively removes artifacts from EEGs and improves the
eadability of EEGs impaired by artifacts. Only in rare cases
oes the algorithm attenuate EEG patterns slightly, but the
lear visibility of significant patterns was preserved in all
ases of the validation study. PureEEG is a valuable tool for
EG artifact removal, which reliably preserves significant
EG patterns from cerebral sources, and removes numerous
ypes of artifacts, including myogenic artifacts, electrode
rtifacts, movement artifacts or line noise. A computation-
lly efficient implementation of the algorithm makes it a
iable alternative or extension to commonly used post-hoc
requency filtering in EEG review software.
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