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Background: NeuroTrend is a computational method that analyzes long-term scalp EEGs in the ICU according to
ACNS standardized critical care EEG terminology (CCET) including electrographic seizures. At present, it attempts
to become a screening aid for continuous EEG (cEEG) recordings in the ICU to facilitate the review process and
optimize resources.
Methods: A prospective multicenter study was performed in two neurological ICUs including 68 patients who
were subjected to video-cEEG. Two reviewers independently annotated the first minute of each hour in the
cEEG according to CCET. These segments were also screened for faster patterns with frequencies higher than
4 Hz. The matching annotations (2911 segments) were then used as gold standard condition to test sensitivity
and specificity of the rhythmic and periodic pattern detection of NeuroTrend.
Results: Interrater agreement showed substantial agreement for localization (main term 1) and pattern type (main
term 2) of the CCET. The overall detection sensitivity of NeuroTrend was 94% with high detection rates for periodic

discharges (PD = 80%) and rhythmic delta activity (RDA = 82%). Overall specificity was moderate (67%) mainly
because of false positive detections of RDA in cases of general slowing. In contrast, a detection specificity of 88%
for PDs was reached. Localization revealed only a slight agreement between reviewers and NeuroTrend.
Conclusions:NeuroTrendmight be a suitable screening tool for cEEG in the ICUandhas thepotential to raise efficiency
of long-term EEG monitoring in the ICU. At this stage, pattern localization and differentiation between RDA and
general slowing need improvement.
This article is part of a Special Issue entitled “Status Epilepticus”.
© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The increased use of continuous EEG (cEEG) in the intensive care
unit (ICU) for patients with critical illness has been propagated lately
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by many authors [1–7]. This is due to the fact that nonconvulsive sei-
zures (NCSs) and nonconvulsive status epilepticus (NCSE) occur more
often than previously anticipated [8]. Sutter et al. revealed that, after
implementing cEEG into clinical practice, the rate of NCS diagnosis in-
creased significantly compared with previous diagnostics. This might
be not only due to higher observer awareness and greater availability
of EEG but also due to longer observation periods [1]. Incident rates di-
verge a lot, as the studied patient populations are seldom homogeneous
and inclusion criteria for cEEG vary between studies. i.e., 19% of the
patients had NCSs in a study from Claassen [5] compared with 34%
found in a study of Jordan [9]. Patients who suffered from convulsive
status epilepticus often convert to NCSE after their convulsions
have stopped [10]. Also, patients with altered state of consciousness
and clinical features like subtle motor activity and abnormal eye
movements may suffer from NCE or NCSE [11]. Privitera could demon-
strate that in 198 patients with altered state of consciousness, 37%
had NCSs [12]. In comatose patients, there is nearly no evidence of
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seizure activity without EEG. Towne showed that in 236 coma
patients with unclear genesis, 8% had NCSE [13]. Therefore, cEEG
still remains the gold standard for reliable diagnosis of NCSs and
NCSE. Whether NCSE is a predictor for bad outcome in patients
with critical illness is difficult to assess because treatment effects,
causative medical disorder, and complications are difficult to sepa-
rate. Until now, seizure duration and delayed diagnosis of NCSs and
NCSE are the only two independent parameters known to increase
morbidity and mortality [14].

Recently, the use of cEEG in patients with critical illness has been re-
ported to be associated with a favorable outcome [15]. Continuous anal-
ysis of cEEG by a trained expert reviewing segments of 10 s each is
virtually impossible but would enable early and adapted treatment for
the patient. Quantitative EEG (QEEG) addressed this important problem
by evaluating the EEG in real time and by showing amplitude, power,
frequency, and rhythmicity in compressed time scales [16]. The down-
side of QEEG techniques is the oversimplified approach to extract
EEG information. This leads to a predisposition to false positive errors,
and seizure activity can be missed in the shadow of high-amplitude
artifacts [17].

For a long time period, many authors tried to define and classify
NCSs and NCSE including or excluding EEG patterns frequently seen in
patients with critical illness such as periodic discharges and fluctuating
rhythmic patterns [5,11,14,18–21]. In 2013, the American Clinical
Neurophysiology Society (ACNS) developed a standardized critical
care EEG terminology (CCET) to facilitate communication between
researchers [19].

Based on the CCET, the computational encephalography research
group of the Austrian Institute of Technology (AIT) developed an auto-
mated detection and trending method called NeuroTrend (NT) with
the aim to assist and facilitate the review process of cEEG [22]. In
this work, we evaluate the performance of NT in terms of sensitivity,
specificity, and interrater agreement.

2. Methods

NeuroTrend (NT) is a computational method that automatically
detects rhythmic and periodic patterns in surface EEG and visualizes
the results graphically. The definition of rhythmic and periodic patterns
follows the guidelines of the American Clinical Neurophysiology Society
Terminology [19]. Additionally, rhythmic patterns ofmore than 4Hz are
detected to cover the whole spectrum of electrographic seizure pat-
terns. The aim of this work is to evaluate the sensitivity and specificity
of detected patterns compared with manual-annotated EEG segments.
The technical methodology used in the rhythmic and periodic pattern
detection was described recently by Fürbass [22]. In this work,
NeuroTrend version 1.1 was used for the calculation of all detections
(NeuroTrend V1.1, www.eeg-vienna.com).

2.1. Data acquisition and patient selection

We prospectively recorded long-term video-EEGs (n = 68) using
the international 10–20 electrode system with a sampling rate of
256Hz. The recordingwas done at the neurological ICU of theNeurolog-
ical Center Rosenhuegel (NCR) and the neurosurgical ICU of the General
Hospital Vienna (GHV) using a Micromed EEG recording system
(SystemPLUS Evolution 1.04.95) betweenMarch1, 2013 and September
1, 2014. Only cEEGs with a recording period longer than 20 h were in-
cluded. At least nineteen of twenty-one cup electrodes (including refer-
ence and ground electrode) had to be functional over the whole
recording period. Gold cup electrodes (Genuine Grass Gold Disc elec-
trodes) aswell as conductive plastic cup electrodes (Ives EEG Solutions)
were used for recordings. Gold cup electrodes were used preferentially.
Plastic cup electrodes were used in cases where CT scans had to be car-
ried out regularly.
The treating physician conducted patient selection according to the
following criteria:

a) Remote eye movement abnormalities or subtle myoclonus
b) Short time period since patient's admission and neurologic injury
c) Low Glasgow Coma Scale (GCS).

The criteria applied were expected to filter out as many cases of
NCSs/NCSE as possible according to Husain et al. [11] and Claassen
et al. [5]. Patients younger than 18 years and patients with a high risk
of infection (e.g., because of expanded wounds) were excluded from
the study.

2.2. Validation strategy

In a first step, two clinical neurophysiologists from the recording
centers NCR and GHV were asked to annotate the first minute of each
hour in the video-EEG recording of their own center. The reviewers
who were naïve to these video-EEGs had to screen for mechanical ven-
tilation artifacts, electrocardiogram artifacts, and rhythmic movements.
Electroencephalography pieces including these artifacts were labeled
accordingly. Video and sound data were then separated from the EEG,
and the EEGs were anonymized. The anonymized EEGs from both
sites were then merged, resulting in a dataset of 68 long-term EEG
recordings.

In a second step, both evaluators were asked to annotate rhythmic
and periodic patterns in the one-minute annotation segments of all 68
EEGs from both centers. The definition of these patterns followed the
main term 2 definition (MT2) in the CCET guidelines [19]. The MT2 def-
inition was extended to include rhythmic pattern of more than 4 Hz.
Both reviewers were firm with the recent version of CCET and had
used ACNS training slides several times. The reviewers could use the
EEG viewer without any restriction in relation to montage or filters.
Several nonoverlapping annotations were allowed. Each annotation
may have an arbitrary start and an end position but has to be fully in-
cluded in the annotation minute. For each annotation, the reviewer
was allowed to choose between one of the following pattern types:
periodic discharges (PDs), rhythmic delta activity (RDA), rhythmic
theta activity (RTA), rhythmic alpha activity (RAA), and rhythmic
spike-and-wave activity (SW). If the reviewer did not insert any an-
notation in the one-minute interval, it was counted as no pattern
(NOPAT).

In addition to the pattern type, a localization property had to be de-
fined. This property was defined according to the CCET [19] as main
term 1 (MT1): generalized (G), lateralized (L), multifocal (MF), and bi-
lateral independent (BI).

The annotations from the two reviewers were then used as gold
standard condition to test the sensitivity and specificity of the rhythmic
and periodic pattern detection of NT. Evaluation scriptswere used to au-
tomatically read the reviewer annotations and to calculate the detection
performance numbers. Artifact annotations from the first annotation
step were only assessed if no other markers were placed in the annota-
tion segment.

2.3. Statistical methods

The detection performance was defined by assigning one of four
possible test conditions to each annotation minute: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). A pattern
was counted as TP if one of the detected patterns in the annotationmin-
ute matched the gold standard annotation. A gold standard annotation
was defined as an agreement between both reviewers. If no agreement
between the two reviewers was met, the annotation interval was ex-
cluded from the calculation. A gold standard annotation without a
matching detection in the annotationminute was counted as FN. An an-
notation segment with one or several detections that do not match the
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Fig. 1. Explanation of validation strategy: a) shows 16 s of raw EEGwith left-sided rhythmic theta activity (RTA). The same EEG at the same time point is represented as a vertical red line in
theNeuroTrend data illustration underneath. b) Demonstrates the usage of NeuroTrend as it displays 4 h (variable adjustment of time) of cEEG color-coded on one page. A clear repetition
of RTA (orange bars, color code is displayed at the right side) occurring nearly every 15min can be seen in the left hemisphere. AEEG also shows the 15-minute intervals but not the type of
the pattern. c) One minute was extended out to illustrate the assessment process. The whole 1-minute interval shows detections of RTA (orange) and RDA + S (violet) when used for
sensitivity and specificity calculation respectively. When divided into 20-second segments, segments 1, 2, and 3 show RTA, but only segment 3 includes RDA detection. For calculation
of Cohen's kappa (κ) values, the pattern type and localization with the highest percentage of time coverage are used. The 1-minute segment, therefore, counts as lateralized RTA (*).
The 20-second segments are counted twice as lateralized RTA and once as frontal RDA.
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gold standard annotation was counted as FP. An annotation segment
without gold standard annotation (NOPAT) and without any detection
was counted as TN. Sensitivity (SE) and specificity (SP) were calculated
according to the following formulas:

SE %½ � ¼ TP
TPþ FN

� 100

SP %½ � ¼ TN
TNþ FP

� 100:

To verify the interrater agreement between both reviewers, kappa
(κ) values were calculated for each annotation interval. The same ap-
proach was used for the comparison between reviewers and NT for
the categorical parameters MT1 and MT2. Both κ-statistics were calcu-
lated in two passes. First, the standard annotation interval of 60 s was
used. Second, the same segment was divided into three shorter seg-
ments of 20 s, each offering a more detailed analysis. In each annotated
segment, the annotationwith the longest duration timewas used to cal-
culate κ-statistics. The rationale behind having two different evaluation
intervals lies in NT's intentional usage as trending software and is dem-
onstrated in Fig. 1.Whilewe hypothesize that the 20-second time inter-
val gives us a statement about the actual hit rate, the 60-second time
interval should reflect the progression of EEG patterns and their trend.

The following qualitative classifications are used to categorize κ values
into different ranges: poor agreement: ≤0; slight agreement: 0.01–0.20;
fair agreement: 0.20–0.40; moderate agreement: 0.40–0.60; substantial
agreement: 0.60–0.80; and almost perfect agreement: 0.80–1.00 [23].

3. Results

3.1. Patient characteristics

In the study period, 80 patients were monitored with continuous
video-EEG. Five patientswere excluded from the study because of insuf-
ficient data quality, long time periods with detached electrodes, or less
than 17 electrodes at the beginning of recording. Another 7 patients
were excluded because of a recording duration of less than 20 h. The
mean age was 58 (±16.5) years with a female to male ratio of 35:33.
Plastic cup electrodes were used in 27 cases, while the majority of pa-
tients (n = 41) were monitored with gold cup electrodes. Continuous
Electroencephalography (cEEG) of 4813 h were recorded in total with
Table 1
Interrater agreement of main term 2 according to standardized critical care EEG terminology inc
ger sixty-second evaluation intervals are shown as opposed to the shorter twenty-second inte
chosen evaluation interval. It is evident that rhythmic slowing of the EEG is often difficult to diff
NOPAT= no pattern, PD = periodic discharge, RAA= rhythmic alpha activity, RDA= rhythm

60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20

NOPA 1489 7149 38 168 0

PD 21 105 242 393 0

RAA 0 0 0 0 2

RDA 43 103 6 5 0

RTA 0 1 2 2 0

SW 2 4 0 0 1

0.79 0.67

Re
ve

w
er

 1

Cohens 
Kappa: 

NOPA PD RAA
a median length of 48 h. This led to 2911 segments of 1 min each avail-
able for evaluation purposes.
3.2. Interrater agreement

Interrater agreement of main term 1 (MT1) as well as main term 2
(MT2) according to standardized critical care EEG terminology (CCET) as
well as electrographic seizures was performed between the two
reviewers [19]. Main term 1 showed a substantial agreement in both
short (20-second) and long (60-second) annotation intervals. The same
Cohen's kappa (κ) values could be found for MT2 and are presented in
Table 1. A good agreement between reviewerswas crucial to enable further
validation between reviewers and automated pattern detection. Looking at
eachMT2pattern separately, rhythmic delta activity (RDA)was the pattern
with the highest disagreement between reviewers and deteriorated further
in the more detailed 20-second analysis (Fig. 2). Rhythmic alpha activity
(RAA), spike-and-wave activity (SW), and rhythmic theta activity (RTA)
showed a good agreement but occurred in very low numbers.

3.3. Validation of main term 2 (MT2)

Sensitivity and specificity of NeuroTrend (NT) for MT2 patterns are
shown in Fig. 3. While sensitivity for the detection of any MT2 pattern is
high (0.94), specificity is low(0.67) for 60-second annotationswith a pos-
itive predictive value of 0.2 and a negative predictive value of 0.99. In the
shorter 20-second time interval, sensitivity declines to 0.84, while speci-
ficity rises to 0.78. The same can be seen for periodic discharges (PDs)
and RDA. Sensitivity declines from 0.8 to 0.59 for PD and 0.82 to 0.71 for
RDA if compared between the 60-second annotation interval and the
shorter 20-second annotation interval. Specificity inversely rises
from 0.88 to 0.93 for PD and from 0.72 to 0.83 for RDA. Rhythmic
theta activity and rhythmic spike-and-wave activity showed high
specificity and sensitivity, while RTA was detected with a high spec-
ificity solely. Because of the low number of RTA, SW, and RAA in our
study, no serious conclusions can be drawn for these patterns.

κ-Statistic showed similar results in regard to the agreement be-
tween NT and the reviewer gold standard (Table 2). Included segments
in which no patterns were found (NOPAT) κ-statistic revealed a fair
agreement between NT and the gold standard with a decline of agree-
ment from 0.38 for 60-second annotations to 0.24 for 20-second anno-
tations. This decline cannot be reproduced if no patterns (NOPATs) are
luding electrographic seizures between two independent reviewers. The results of the lon-
rvals. Overall, there is substantial agreement between the two reviewers regardless of the
erentiate from RDA. Numbers of RAA and RTA are too low tomake a reasonable statement
ic delta activity, RTA = rhythmic theta activity, SW= rhythmic spike-and-wave activity

 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec.

3 24 57 1 3 0 2

0 4 9 1 2 0 0

3 0 0 1 2 0 0

0 74 109 0 0 1 2

0 1 2 5 10 0 0

2 0 0 1 0 8 13

Reviewer 2

RDA RTA SW
.

.

Unlabelled image


Fig. 2. The number of interrater agreements (Rev1 = Rev2) as well as disagreements
(Rev1, Rev2) is shown for rhythmic delta activity (RDA) and periodic discharges (PDs)
separately for 20- and 60-second annotation intervals. PDs show a substantial agreement
with an even rise in agreements and disagreements in both annotation intervals. Agree-
ment for RDA on the contrary deteriorates with more detailed analysis.
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excluded from the calculation. This is mainly due to the fact that NT
often detected RDA falsely when NOPATwas assigned. This observation
was getting worse if a higher time resolution was used for calculation.

3.4. Validation of main term 1 (MT1)

While MT1 showed a substantial agreement (0.79) between re-
viewers, κ between reviewers and NT is poor (0.16) if NOPATs are not
included in the statistic.

3.5. Artifacts

Artifacts in cEEG play a major role in the ICU and can disturb auto-
matic pattern detection heavily. NeuroTrend, therefore, uses an artifact
rejection module called “PureEEG” which has been described recently
[24]. During the review process, cEEGs were reviewed for artifacts in
the annotation segments with the help of video and sound recordings.
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Fig. 3. Detection performance of NeuroTrend. NeuroTrend has a high sensitivity compared with
suitable as a screening tool. Specificity for PD is high,while specificity for RDAand, therefore, also
a higher specificity at the cost of a lower sensitivity. For the patterns SW, RTA, and RAA, not eno
activity, RDA = rhythmic delta activity, RTA = rhythmic theta activity, SW= rhythmic spike-
Artifacts weremarked but not excluded in NT analysis. During evaluation
of these segments, it could be seen that NT was relatively stable for arti-
facts with 664 (60.3%) detections as NOPAT out of 1102 artifact markers
resulting in 438 (39.7%) falsely labeled segments. In terms of pattern,
mainly NT's RDA detection was triggered by artifacts and reached 295
(67.3%) false detections. False detection rate of an artifact as a rhythmic
or periodic pattern was 108 (24.7%) for PD, 32 (7.3%) for RTA, and 3
(0.7%) for SW. Artifacts were never detected falsely as RAA.

4. Discussion

In this article, we assessed and validated the rhythmic and periodic
pattern detection performance of an automated computer algorithm
called NeuroTrend (NT) [22]. The aim of NT is the quick visualization
of several hours of cEEG recordings based on ACNS standardized critical
care EEG terminology (CCET) including rhythmic patterns with fre-
quencies higher than 4 Hz [19].

While conventional QEEG displays compressed raw EEG in terms of
technical measurements, NT transcribes automatic detections into neu-
rophysiological established wording [24]. Another big difference be-
tween QEEG and NT consists in the prior usage of artifact rejection.
Therefore, QEEG may facilitate the review process of larger cEEG
files but comprises the risk of false interpretation due to processed arti-
facts. Both methods have got a strong data compression property.
NeuroTrend allows the graphical representation of large cEEG files, giv-
ing the reviewer the possibility to screen several hours to days of cEEG
on a few pages. It is important to stress that NT's focus lies in displaying
trend data. It should depict changes in EEG over longer time periods and
not exact values at a certain time point. That is why an unconventional
approach to assess correct pattern analysis has been chosen. While
most studies assess monitoring devices by interrater agreement at
preselected time points, we tried to approach real cEEG testing condi-
tions by using unselected time intervals [25,26]. Furthermore, final cal-
culations of agreement were automated to minimize confounders. A
time interval of 1min every hourwas randomly chosen regardless of re-
cording quality, presence or absence of artifact, and EEG pattern. To en-
able the evaluation of correct EEG pattern detection during this minute,
we separately analyzed a segment of 60-second as well as three 20-
second fragments. It might seem that the detection of shorter segments
PD
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RAA
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city [%]

the gold standard of two reviewers (60 s) for PD, RDA, and ANY patterns. Therefore, it is
for ANY ismoderate. The shorter 20-secondannotation interval showedus a shift towards
ugh data were collected to be significant. PD= periodic discharge, RAA= rhythmic alpha
and-wave activity, ANY = all patterns previously mentioned together.
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Table 2
Kappa statistic ofmain term2 according to standardized critical care EEG terminology including electrographic seizures between reviewers (gold standard) andNeuroTrend. The results of
the longer sixty-second evaluation intervals are shown as opposed to the shorter twenty-second intervals. Overall, there is a fair agreement with a considerable drawback in the shorter
evaluation interval. This is due to the increased number of false positive detections, especially for RDA. Excluding NOPAT and considering only intervals where reviewers and NeuroTrend
found a pattern highlight this finding. No difference can be found in Cohen's kappa between the sixty-second evaluation and the twenty-second evaluation anymore. NOPAT=nopattern,
PD = periodic discharge, RAA = rhythmic alpha activity, RDA = rhythmic delta activity, RTA = rhythmic theta activity, SW= rhythmic spike-and-wave activity.

60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec.

NOPA 1052 5607 130 438 0 10 300 999 7 77 0 18

PD 18 73 155 216 0 0 58 85 0 0 12 21

RAA 0 0 0 0 0 1 0 0 3 3 0 0

RDA 3 15 17 19 0 0 58 74 2 1 0 0

RTA 0 0 5 6 0 0 2 6 1 2 0 0

SW 0 0 2 4 0 0 2 4 0 0 4 5

0.38 0.24

0.38 0.36
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is more precise to predict the hit rate and, therefore, sensitivity and
specificity. However, in contrast to spike detection and other alarm de-
vices, the detection of a single measurement by the algorithm is not its
primary purpose. Similar to a human EEG reviewer who has the ability
to focus on relevant EEG changes, NT should display the progression of
predominant ongoing patterns. That is why our primary study outcome
wasmeasured by the longest pattern available during 60 s as presented
in Fig. 1.

Because the validation process should be as close to real screening
conditions as possible, all cEEG data were recorded prospectively, no
cEEG file was used for preceding algorithm development, and artifacts
were not removed.

Interrater agreement between both reviewers showed a substantial
agreement (0.6–0.8) in MT1 andMT2. A good agreement was essentially
required to establish a gold standard condition againstwhich NT could be
tested. Ourfindings of a high interrater agreement correspond toprevious
interobserver studies that tested the 2012 version of the ACNS nomencla-
ture [27,28].

Because EEG segments were not preselected, the marker NOPAT for
EEG segments without rhythmic or periodic pattern was introduced.

The assessment of NT showed that itmight be a useful screening tool
for cEEG. On the one hand, NT revealed a high overall sensitivity (0.94)
for MT2 patterns and a low rate of false negative detections. On the
other hand, overall specificity (0.67) was low with only one true hit
out of five detections. It should not be overlooked that sensitivity de-
clines and specificity rises when the shorter 20-second interval is used
for evaluation. Specificity for PD is good (0.88) while specificity for
any pattern and RDA is moderate. Table 2 illustrates nicely the large
number of false positive RDA detections in segments where the re-
viewers assigned NOPAT. Likewise to moderate results in specificity
for RDA in our study and poor raw percentage of positive agreement
for RDA (57%), a recent study showed that RDA is often difficult to dis-
tinguish from general slowing [29].

Evaluation ofMT1 revealed thatNThas a tendency to detect patterns
as lateralized. Patternswith anterior - posterior lag and hemispheric dif-
ferences are the cause of this behavior.
Electroencephalography is prone to artifacts, and many forms of ar-
tifacts in cEEG at the ICU have been described [30]. Like already outlined
above NT can distinguish itself from other screening tools by an artifact
rejection property called “PureEEG” [24]. Artifacts can falsely trigger
pattern detections of NT in 39.7% of all prior labeled artifacts. Especially
RDAwas triggered by artifacts, which lead to a high false positive detec-
tion of RDA.

Limitations of the study can be seen in a small number of patients
and the unequal distribution of patterns. These issues had to be con-
doned to enable a prospective study. Furthermore, it could be argued
that including only segments where solely two reviewers gave an
agreement may exclude potential difficult patterns from evaluation.
Once again, it has to be stressed that interrater agreement for CCET
has been proven high in our as well as in previous studies [27,28].

5. Conclusion

NeuroTrend might become a suitable screening tool for cEEG and
has the potential to raise the efficiency of long-term EEG monitoring
in the ICU. As it still offers the possibility to switch between trend data
and raw EEG, it does not interfere the review process and can be used
complementary to raw EEG, which remains gold standard for EEG inter-
pretation. At this stage, pattern localization and differentiation between
RDA and general slowing need further improvement.
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