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� Fully automatic computational method to detect burst suppression patterns in critical care EEG.
� Insensitivity to EEG artifacts and periodic patterns makes the system suitable for clinical use in

real-time patient monitoring.
� Multi-centric evaluation including the EEG of 88 patients showed high sensitivity and specificity.

a b s t r a c t

Objective: To develop a computational method to detect and quantify burst suppression patterns (BSP) in
the EEGs of critical care patients. A multi-center validation study was performed to assess the detection
performance of the method.
Methods: The fully automatic method scans the EEG for discontinuous patterns and shows detected BSP
and quantitative information on a trending display in real-time. The method is designed to work without
setting any patient specific parameters and to be insensitive to EEG artifacts and periodic patterns. For
validation a total of 3982 h of EEG from 88 patients were analyzed from three centers. Each EEG was
annotated by two reviewers to assess the detection performance and the inter-rater agreement.
Results: Average inter-rater agreement between pairs of reviewers was j = 0.69. On average 22% of the
review segments included BSP. An average sensitivity of 90% and a specificity of 84% were measured
on the consensus annotations of two reviewers. More than 95% of the periodic patterns in the EEGs were
correctly suppressed.
Conclusion: A fully automatic method to detect burst suppression patterns was assessed in a multi-center
study. The method showed high sensitivity and specificity.
Significance: Clinically applicable burst suppression detection method validated in a large multi-center
study.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Burst suppression is an electroencephalogram (EEG) pattern
consisting of intermittent periods of very low voltage brain electri-
cal activity (‘‘suppression”), alternating in a quasi-periodic fashion
with periods of higher amplitude activity (‘‘bursts”). Burst suppres-
sion patterns (BSP) are found in a wide range of pathological and
clinically-induced conditions, including anesthetic-induced coma,
hypothermia (Pagni and Courjon, 1964; Nakashima et al., 1995)
deep (Ching et al., 2012; Westover et al., 2015), or arising sponta-
neously as a result of anoxic brain injury (Niedermeyer et al., 1999;
Rossetti et al., 2012). The definition for burst durations and for sup-
pression amplitudes varies depending on patient age and clinical
context, ranging from 0.5 to 30 s for the duration of a burst and
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from 5 to 20 lV for suppression amplitudes (Shellhaas et al., 2011;
Zschocke and Hansen, 2011; Hirsch et al., 2013). Although com-
monly described as a generalized phenomenon, BSP can be asyn-
chronous across the cortex and can occur in limited cortical
regions. Local cortical dynamics of BSP were analyzed in Lewis
et al. (2013) and are reported in Sperling et al. (1986), Lazar
et al. (1999) and Mader et al. (2014).

Manual evaluation of BSP in the EEG is a widely used but
impractical approach. Manual evaluation lacks objectivity, and is
not feasible for continuous monitoring over multiple hours. Several
automatic or semi-automatic detection methods exist in the liter-
ature. The recent work of Murphy analyzed burst and suppression
segments of pre-term infants using various mathematical features
(Murphy et al., 2015). The method was validated using preselected
EEG segments and resulted in high agreement compared to three
reviewers. A detection method based on the line length feature
using the EEG of 10 pre-term infants was presented in Koolen
et al. (2014). An automatic classification method for burst and sup-
pression events was validated in (Westover et al., 2013) on 20 crit-
ical care EEG recordings that were selected based on clinical EEG
reports. The detection algorithm was trained on these 20 EEGs
and showed high agreement compared to human annotations.
Numerous other methods exist in literature that use various math-
ematical features to detect BSP (Thomsen et al., 1991; Lipping
et al., 1995; Bruhn et al., 2000, 2006; Jaggi et al., 2003; Liang
et al., 2014) but include a limited number of patients.

This work will present a fully automated detection method to
find burst suppression patterns in multi-channel EEG. The method
is insensitive to EEG artifacts and periodic patterns and can be cal-
culated in real-time. We present detection performance results
from an evaluation of continuous EEG recordings from 88 adult
patients from three intensive care units.
2. Methods

2.1. Automatic detection method

A computational method is presented that automatically
detects burst suppression patterns (BSP) in digital multi-channel
electroencephalograms (EEGs). The method works fully automati-
cally without the use of training data and without estimation of
patient-specific parameters. Data is analyzed in real-time to allow
continuous patient monitoring. The goal is to graphically visualize
the detection results over large time scales of up to several days in
a quantitative EEG interface similar to the approach shown in
(Fürbass et al., 2015a). Fig. 1 shows examples of burst suppression
and periodic pattern detections of a 20 h EEG recording.

The major steps in the whole detection procedure are outlined
in Fig. 2. First, the EEG is segmented into consecutive and non-
overlapping detection segments of 15 s. All further processing is
based on these detection segments. Scalp EEG artifacts are
removed using the PureEEG method (Hartmann et al., 2014). The
PureEEG method is based on a neurophysiological model and uti-
lizes an iterative Bayesian estimation scheme to remove artifacts
like movement, muscle, line noise, and loose electrode artifacts.
Further analysis is based solely on the output of the PureEEG mod-
ule. All subsequent detection and classification steps therefore
assume that the activity measured in the EEG channels are of cere-
bral origin. The EEG channels are converted to bipolar longitudinal
and transversal montages following ACNS recommendations
(American Clinical Neurophysiology Society, 2006).

Next, a channel-wise detection of burst suppression events is
performed. In each EEG channel xt the peak-to-peak amplitude is
measured by subtracting the minimum from the maximum digital
value in non-overlapping chunks of 0.4 s. Only EEG samples of the
current detection segment are used. The peak-to-peak time series
of channel xt is smoothed by a moving average filter resulting in
ySt ¼ 1

n

Pn
i¼1jxtþij. The length of the averaging window n is chosen

so that the minimum time for a suppression event is covered. Here,
a minimum duration of 1.5 s for suppression events is assumed.
The same procedure but with a window length of 0.5 s is repeated
resulting in the time series yBt . The samples of the time series ySt and
yBt are then used to detect suppression events in the channel. An
event may include several chunks of 0.4 s. A chunk is defined as
part of a suppression event if either a chunk with double amplitude
follows in 1.5 s ðyBtþ1:5=y

S
t > 2Þ or if a chunk with double amplitude

precedes with 1.5 s distance ðyBt�1:5=y
S
t > 2Þ. All remaining chunks

in the detection segment are part of a suppression event if their
amplitude is below the amplitude of the initially detected suppres-
sion chunk. All chunks that are not marked as part of a suppression
event at this processing step are part of a burst event if the peak-
to-peak amplitude is higher than double amplitude of the sur-
rounding suppression chunks. Fig. 3 shows the processing steps
of the channel-wise detection procedure.

The channel-wise detection information is then used as input to
a hierarchical cluster algorithm to find spatial groups of the same
activity type. The k � k distance matrix MS includes the time dis-
tance between the middle points of k suppression chunks. The
variable k is the total number of suppression chunks in the detec-
tion segment. Chunks that were neither marked as suppression nor
burst do not contribute to the distance matrix and are also not con-
sidered further. The distance matrix is then used to create a hierar-
chical cluster tree. The Euclidean distance between two chunk

positions a ¼ Mi;j
S and b ¼ M

�i;�j
S defined as dða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðai � bjÞ2

q
is

used to measure the distance between two chunks. The
unweighted average distance algorithm using the cluster linkage
criteria 1

jAjjBj
P

a2A
P

b2Bdða; bÞ defines the dissimilarity between two

groups of suppression chunks A and B. The same procedure is
repeated for chunks of burst activity. The normalized cluster tree
is cut with a constant cutoff factor to create burst and suppression
clusters. By solely utilizing the middle point as distance metric an
influence of the spatial location of the suppression or burst activity
is avoided. This also means that channels used to build up a cluster
do not have to be spatially adjacent (e.g. cluster C4

SUPP in Fig. 2). In a
next step the best fitting cluster for each time point is determined.
Clusters are sorted descending according to their duration. Starting
with the longest cluster and by elaborating each cluster in the
sorted list, the first cluster that covers a time point is accepted.
Subsequent overlapping clusters are reduced in time to be non-
overlapping with accepted clusters. Clusters with durations less
than the minimum requirement for burst or suppression will be
discarded. This approach will discharge parts of the suppression
or burst chunks that are not time aligned with the majority of
the other chunks in the cluster. This also means that there is no
need for a single channel to fully cover the time span of the cluster.
All channels are treated equally, the method do not exploit the spa-
tial location of the involved channels. The resulting clusters repre-
sent burst or suppression detections that span several EEG
channels and extend over a certain time period. In this method
clusters need to span at least 40% of the cortical area covered by
electrodes to be further used in the detection procedure. The min-
imum coverage value of 40% was determined empirically and
serves as a sensitivity parameter of the method (see Section 4).

An important task in automatic detection of BSP is to avoid false
detections of other EEG patterns that consist of discontinuous
waveforms. A defining feature of periodic patterns is that they con-
tain regularly repeating waveforms of duration less than 0.5 s. The
inter discharge interval of PDs range from a fraction of a second to
several seconds and can therefore share some features of burst



Fig. 1. Quantitative EEG interface (NeuroTrend, www.encevis.com) showing the detection results of a 20 h EEG recording registered in the intensive care unit. (A) The upper
plot show periodic pattern detections (Fürbass et al., 2015a) which are continuously present for approx. 5 h in this patient. The lower plot labeled ‘‘burst suppression”
represents the automatically detected burst suppression patterns. (B) The EEG at time point 1 shows an example of a periodic pattern; the EEG at time point 2 gives an
example of a burst suppression pattern.
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suppression patterns. When repeating EEG waveforms occur on a
low voltage (<10 lV) background that last no longer than 0.5 s or
exhibit no more than 3 baseline crossings, the critical care EEG ter-
minology of the ACNS (Hirsch et al., 2013) defines the pattern as
one of periodic discharges rather than burst suppression. By con-
trast, bursts in burst suppression patterns need to have durations
of at least 0.5 s and at least 4 baseline crossings. Fig. 4 outlines
the differences between burst suppression and periodic patterns
and also shows some borderline examples. In this work we apply
the definitions of the ACNS critical care EEG terminology by count-
ing the number of waveform crossings of the baseline in each EEG
channel of the burst cluster and by measuring the length of the
bursts. All burst clusters with a length of less or equal 0.5 s and less
than 4 phases are considered as periodic patterns and are dropped.
This behavior is also in concordance with the method for automatic
detection of periodic patterns presented in (Fürbass et al., 2015a;
Herta et al., 2015).
The average length of the bursts sBURST and the length of the
inter burst intervals sIBI as well as the average suppression and
burst amplitude AIBI and ABURST are calculated. These values are
stored in the detection result and can be used to characterize the
BS patterns. For example the ratio of burst to suppression length
is commonly used to measure the depth of pharmacologically
induced coma sedation.

Detection segments are marked as a burst suppression pattern
if two conditions apply: first, at least one suppression cluster
was detected with AIBI 6 10 lV and sIBI P 1:5 s. Second, one burst
cluster with ABURST of more than two times the lowest suppression
cluster amplitude and sBURST P 0:5 s was found in the detection
segment. The quantity of these parameters follow the definitions
in the ACNS’ critical care EEG terminology (Hirsch et al., 2013).
An exception is the value of 1.5 s for sIBI which was found empiri-
cally through extensive manual evaluation of BSP during algorithm
development.

http://www.encevis.com


Fig. 2. Block diagram of the automatic burst suppression detection method with the resulting clusters visualized in an EEG segment. The burst and suppression clusters CBURST
(dashed line) and CSUPP (solid line) do not overlap in time and may include several channels. The EEG sample shows a bihemispheric and asynchronous burst suppression
pattern where each burst covers approximately 50% of the EEG channels. The detection segment was correctly classified as a burst suppression pattern. The calculation
procedure involves: (I) segmentation of the EEG, (II) artifact removal using the PureEEG module, (III) channel-wise detection of burst suppression chunks, (IV) building of
spatial clusters using the time position of the detected burst and suppression chunks, (V) detection and removal of periodic patterns, (VI) burst suppression classification.

Fig. 3. Processing steps of the channel-wise burst suppression event detection. (A) The peak-to-peak amplitudes measured for each chunk of 0.4 s length are shown as dots.
(B) Based on a smoothed time series of these chunk amplitudes each chunk with a preceding double amplitude chunk is marked as part of a suppression event (circle markers
on the suppression chunks). The same is done for chunks followed by a double amplitude chunk (cross markers showing the double amplitude chunks). (C) All suppression
events are expanded to include all chunks with amplitudes below the initially detected suppression chunks. (D) The final channel wise detection of bursts chunks (star
markers) and suppression chunks (square markers) after expansion of the burst.
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The method was implemented in the programming language
C++ to allow fast calculation and integration in the detection user
interface shown in Fig. 1. The software module is able to analyze
24 h of EEG in 20 min on a standard PC hardware and is therefore
72 times faster as the recording speed. The method uses consecu-
tive detection segments of 15 s length, each detection segment can



Fig. 4. EEG examples showing morphology differences between burst suppression and periodic pattern detections. (A) Burst suppression pattern; both bursts have a length of
one second and more than 3 phases. (B) Burst suppression pattern; the very low burst amplitude requires increased amplitude sensitivity for visual inspection. The last burst
includes a single discharge of higher amplitude. (C) Periodic pattern; repetitive high amplitude waveforms of less than 0.5 s length with a surrounding low amplitude burst
suppression pattern. As the amplitude of the surrounding burst suppression waveform is negligible, the EEG segment was detected as periodic pattern. (D) Periodic pattern;
although the length of the discharges sometimes reaches the limit of burst suppression patterns (0.5 s) all discharges have less than 3 phases and are therefore periodic
patterns. The pattern could be misinterpreted as burst suppression by an automatic detection system if the number of phases is not evaluated. (E) Periodic pattern; the low
amplitude discharges repeat with an inter discharge interval of less than 1 s.
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be analyzed in about 200 ms. The output of the method is based on
a single detection segment without using any future information or
other detection segments. Together with the delay to wait for 15 s
of EEG data the overall processing delay sums up to 15.2 s. Hence,
‘‘realtime” monitoring of patients with a constant time delay of
15.2 s is possible.

2.2. Clinical validation

We determined the detection performance by comparing detec-
tion results of the presented computational method with EEG
annotations of several reviewers. Sensitivity (SE), specificity (SP),
positive predictive value (PPV), and negative predictive value
(NPV) are measured as defined in Eqs. (1)–(4) of Table 1. The
inter-rater agreement (IRA) between human annotations and
detection results was also quantified (see below).

EEG data of adult critical care patients from three different
centers was used for evaluation and is summarized in Table 2.
Video-EEGs from the neurological ICU of the Neurological Center
Rosenhuegel Vienna and the neurosurgical ICU of the General
Hospital Vienna were recorded using a Micromed EEG system (Sys-
temPLUS Evolution 1.04.95) betweenMarch 1, 2013 and September
1, 2014. Data was recordedwith a sampling rate of 256 Hz using the
international 10–20 electrode system. The initial purpose of the
recordings was the validation of a method for detection of rhythmic
and periodic patterns (Fürbass et al., 2015a; Herta et al., 2015). The
data of these two centers was combined for the dataset named
Table 1
Statistical equations.

Sensitivity

Specificity

Positive predictive value

Negative predictive value

95% CI for probabilities p̂ (SE, SP, PPV, NPV)

Cohen’s j value

Standard deviation of Cohen’s j value

95% CI for Cohen’s j value

The numbers of true positive (TP), false positive (FP), true negati
sensitivity, etc. The confidence interval for point estimates of p
samples (n) that were used to calculate the parameter (i.e. TP + FN
given by the approximated standard deviation SDj .
VIEN. The EEG data of the third center was recorded at the Mas-
sachusetts General Hospital (MGH) between August 2010 and
March 2012. The EEGs from critically ill neurological patients were
identified by retrospective review of clinical EEG reports. All of
these EEGs included burst suppression activity and were used to
validate a real-time burst suppression segmentation method
(Westover et al., 2013). All these EEGs were recorded at 256 Hz
using XLTEK clinical EEG equipment (Natus Medical Inc., Oakville,
Canada) with silver/silver chloride electrodes in the international
10–20 electrode system. In this work the dataset was named MGH.

The EEGs of the dataset VIEN were independently annotated by
two clinical neurophysiologists (JH, JK). To reduce the workload for
annotation of long-term recordings the first minute of each hour
was annotated resulting in 3969 annotation segments. The EEG
software package encevis (www.encevis.com) was used to anno-
tate these one-minute EEG segments. The reviewers were able to
choose between the choices ‘‘EEG with burst suppression patterns”
and ‘‘EEG without burst suppression patterns” for each segment.

The EEGs of the dataset MGH were likewise independently
annotated by two experienced clinical neurophysiologists (BW,
MS). They were asked to mark the beginning and end of all sup-
pression events; all non-suppression segments were defined as
bursts (Westover et al., 2013). For this work the result of the anno-
tation procedure at MGH was available as time series defining one
of three states for each time point: (1) BW and MS agree on sup-
pression, (2) BW and MS agree on burst, (3) disagreement between
BW and MS. The EEGs from MGH where then split into consecutive
SE ¼ TP
TPþFN

(1)

SP ¼ TN
TNþFP

(2)

PPV ¼ TP
TPþFP

(3)

NPV ¼ TN
TNþFN

(4)

CI95%;p̂ ¼ p̂� 1
2n þ 1:96

ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

n

q� �
(5)

j ¼ ðpo�peÞ
ð1�peÞ

(6)

SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
poð1�poÞ
nð1�peÞ2

q
(7)

CI95%;j ¼ j� 1:96SDj (8)

ve (TN), and false negative (FN) events are used to calculate
robabilities like the sensitivity (SE) involves the number of
for SE). The 95% confidence interval of the Cohen’s j value is
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Table 2
Summary of EEG data used for validation.

Recording site Dataset name Patients (n) Hours of EEG monitoring (h)
(min, mean, max)

Annotation
segments (n)

Segments with consensus
annotations (n) (%)

Neurological Center Rosenhuegel Vienna,
General Hospital Vienna

VIEN 68 3969 (4, 74, 388) 3969 440 (11%)

Massachusetts General Hospital Boston MGH 20 12.9 (0.34, 0.63, 1.26) 774 597 (77%)
R VIEN + MGH 88 3982 4743 1037 (22%)

The recording sites with the resulting datasets and the number of annotation segments that were each reviewed by two EEG experts are shown. The number of segments with
burst suppression patterns (BSP) is low (11%) for centers that prospectively collected data without using an exclusion criteria on the content of the EEG. The high number of
segments including BSP of EEGs from MGH (77%) is based on retrospective review and selection of patients with BSP. The dataset combining all three recording centers is
called VIEN + MGH and includes EEGs of 88 patients having BSP in 22% of the annotation segments.

Table 3
Inter-rater agreement of annotations in dataset VIEN.

JK

BS BS

JH BS 440 199

BS 91 3239

j = 0.71 (0.68–0.74)
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segments of one-minute where the annotation ‘‘EEG with burst
suppression patterns” was assigned to segments including at least
one event of type 1 (BW and MS agree on suppression) and one
event of type 2 (BW and MS agree on burst). For all other one-
minute segments the annotation ‘‘EEG without burst suppression
patterns” was assigned.

The burst suppression detection method was applied to all EEGs
using a computer cluster that processed the digital EEG data using
the detection software module. The results are stored in an SQLite
(www.sqlite.org) database format with one detection result for
each non-overlapping EEG segment of 15 s length. The results of
the annotation sessions and the results of the computational anal-
ysis were read by an evaluation script written in Matlab (Natus,
MA). Statistical formulas were calculated in Matlab.

2.3. Statistical analysis

Statistical analysis of detection performance was done by com-
paring the annotations in the one-minute annotation segments to
the detection results of the computational method. Each EEG seg-
ment annotated as ‘‘EEG with burst suppression” with overlapping
any burst suppression detection of 15 s length was defined as a
true positive (TP) event. EEG segments annotated as ‘‘EEG with
burst suppression” without any overlapping burst suppression
detection were defined as false negatives (FN). Segments anno-
tated as ‘‘EEG without burst suppression patterns” and with over-
lapping burst suppression detection were defined as false positives
(FP). All other segments were defined as true negatives (TN).

The statistical parameters SE, SP, PPV, and NPV were calculated
including the events of all annotation segments of the respective
dataset (Eqs. (1–4) of Table 1). The utilization of an arithmetic
mean over patient wise results to estimate the expected value
was avoided (see Section 3.2). To define the 95% confidence inter-
val for these measures the equation for confidence interval calcu-
lation of probabilities (Weiß and Rzany, 2013) is used (Eq. (5)).

The inter rater agreement (IRA) was evaluated by matching the
human annotations segments with the detection segments of the
same kind calculated by the computational method. The Cohen’s
j value was used to quantify the IRA, which is calculated by com-
paring the difference of the agreement observed, po, and the esti-
mate of the expected percent agreement, pe, divided by the
normalization value ð1� peÞ (Eq. (6) of Table 1). The confidence
interval for the Cohen’s j value uses an approximation formula
for the standard deviation (Cohen, 1960) and is given in Eqs. (7)
and (8) of Table 1.

2.4. Analysis of periodic pattern rejection ratio

Periodic patterns represent another important type of electro-
graphic activity that is frequently found in the EEG of critically ill
patients. The morphology of periodic pattern can show similarities
to BSP but is categorized separately in the ACNS critical care EEG
terminology (see Section 1). Periodic patterns were annotated in
the dataset VIEN by two EEG reviewers in the previous work of
Herta (Herta et al., 2015). These annotations were used to investi-
gate how sensitively the burst suppression detection method
reacts to periodic patterns. Annotation segments that were concor-
dantly annotated by two reviewers as ‘‘EEG without burst suppres-
sion patterns” and were concordantly annotated in our previous
work as EEG with a periodic pattern are compared to the results
of the automatic burst suppression method. The number of these
segments without detection divided by the number of all such seg-
ments defines the periodic pattern rejection ratio. High values
imply robustness of the method against confusing periodic pat-
terns with burst suppression patterns.

3. Results

3.1. Inter-rater agreement of annotations

The EEGs in dataset VIEN were annotated by two reviewers (JH,
JK) that were able to choose between BS (EEG with burst suppres-
sion) and �BS (EEG without burst suppression). The inter-rater
agreement shows substantial agreement with a j value of 0.71
(0.68–0.74). Table 3 shows the detailed results.

The EEGs of the dataset MGH were annotated by the two
reviewers (BW, MS) which had to mark the start and end time
points of burst and suppression events. The inter-rater agreement
of the two reviewers was analyzed in (Westover et al., 2013) and
showed an average j value of 0.57 (min 0.05, max 0.89).

By weighting the 3969 review segments from dataset VIEN with
j = 0.71 and the 774 review segments from dataset MGH with
j = 0.57 an average agreement of all review segments can be calcu-
lated with the equation: �j ¼ 0:71 3969

4743 þ 0:57 774
4743 ¼ 0:687. The aver-

age agreement of the burst suppression annotations of two
reviewers on 4743 one-minute review segments is therefore
�j = 0.69.

3.2. Suitable statistical analysis for burst suppression patterns

The kind of statistical analysis that is suitable for a problem
depends on the distribution and prevalence of the events under
investigation. To gain more insight into the prevalence of burst
suppression patterns we analyzed the percentage of segments with

http://www.sqlite.org


Fig. 5. Prevalence of segments with burst suppression patterns (BS) for each patient in dataset MGH (A) and dataset VIEN (B). Patients with less than 5% or more than 95% of
burst suppression segments are marked in grey color.
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burst suppression patterns per patient. We used all segments with
concordant annotations of both reviewers to define the number of
segments with and without burst suppression patterns. Fig. 5
shows the percentage of burst suppression segments for each
patient in dataset MGH and VIEN. The use of statistical values
based on a very small number of samples is problematic and has
to be avoided. The calculation of the sensitivity solely uses seg-
ments with burst suppression annotations which are marginally
represented in 30 patients (34%) of the study (shown in Fig. 5). A
similar situation arises for the calculation of the specificity which
is based on annotation segments without burst suppression pat-
terns. In this study 10 patients (11%) included only a marginal
number of annotation segments without burst suppression pat-
terns. Overall, the patient-wise statistic of 41 patients (47%) would
be based on very small number of samples. The detection perfor-
mance is therefore analyzed including all annotation segments of
all EEGs without using patient wise statistics.
3.3. Performance of the automatic detection method

The results of the automatic burst suppression detection
method were compared to the manual annotations of the review-
ers. Table 4 summarizes the results of the measured detection per-
formance of the automatic method. The detection performance
was analyzed for each reviewer in the dataset VIEN (reviewer JH
and JK) and for their consensus annotations (JH + JK). The consen-
sus annotations only include annotation segments with agreement.
The results are quite similar for annotations of rater JH and JK with
sensitivities of 89% and 88% and specificities of 84% and 81%
respectively. The consensus annotations JH + JK of dataset VIEN
result in a higher sensitivity of 92% and a specificity 85% as some
segments with more difficult patterns have no agreement and
are dropped. The detection performance measured on the annota-
tions of the dataset MGH showed a similar sensitivity as the VIEN
dataset but a lower specificity of 68%. The positive predictive value



Table 4
Performance of the automatic burst suppression detection method.

Performance measures Reviewers and EEG data

SE (%) (CI95%) SP (%) (CI95%) PPV (%) (CI95%) NPV (%) (CI95%) j (%) (CI95%) Rev. (n) Rev. IDs Dataset

89 (86–91) 84 (83–85) 51 (48–54) 97 (97–98) 56 (53–59) 1 JH VIEN
88 (85–91) 81 (80–83) 42 (39–45) 98 (97–98) 47 (44–51) 1 JK VIEN
92 (89–95) 85 (84–87) 46 (43–49) 99 (98–99) 54 (50–58) 2 JH + JK VIEN
88 (85–91) 68 (61–75) 90 (88–93) 63 (55–70) 62 (55–68) 2 BW + MS MGH
90 (88–92) 84 (83–86) 64 (61–66) 96 (96–97) 65 (63–68) 2 JH + JK, BW + MS VIEN + MGH

Detection performance and agreement between the detection algorithm and the EEG reviewers is shown. Sensitivity (SE), specificity (SP), positive predictive value (PPV), and
negative predictive value (NPV) are calculated based on annotations defined by one or two reviewers. The Cohen’s j value measures the level of agreement between the
reviewer and the result of the detection algorithm. The number of reviewers (Rev.) of each EEG sample, their IDs and the annotated datasets are shown.
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of 90% shows the percentage of correct detections in this dataset.
The result of the combined dataset VIEN + MGH using the consen-
sus annotations of JH + JK for the EEGs of VIEN and BW + MS for the
EEGs of MGH show a sensitivity of 90% and a specificity of 84%.

3.4. Rejection ratio of periodic patterns

The dataset VIEN was used to evaluate the periodic pattern
rejection ratio of the burst suppression detection method. The
results of the burst suppression annotation session from two
reviewers (JH, JK) were compared to consensus annotations of peri-
odic and rhythmic patterns created in Herta et al. (2015). Of 3969
annotations segments only 17 (0.43%) were annotated as burst
suppression and as periodic pattern EEG simultaneously. This
shows that periodic patterns and burst suppression patterns are
well established terms that are differentiated in clinical practice.
We found 230 annotation segments that were concordantly anno-
tated as EEG with periodic patterns and without burst suppression
patterns by human reviewers. Only 11 of these 230 segments (5%)
included burst suppression detections. 95% included no burst sup-
pression detection. The periodic pattern rejection ratio of the
method was therefore 95%.

4. Discussion

Long-term EEG monitoring of critically ill neurological patients
has recently received increased attention in the scientific commu-
nity and in clinical practice. Automatic evaluation of the EEG by
computer methods can reduce the burden of visual evaluation
and can further raise acceptance of long-term EEG in the critical
care unit but needs to be validated in studies with clinical rele-
vance. Burst suppression patterns (BSP) are commonly found in
EEGs of anesthetized patients or during pharmacologically induced
coma in the treatment of status epilepticus. In this work we eval-
uated an automatic burst suppression method that was designed
to work in the clinical setting.

The initial objective of this work was to develop a robust and
universally applicable method for automatic detection and quan-
tification of BSP. The presented computer method and clinical val-
idation methodology contribute in several ways to ongoing work in
the field of automatic EEG evaluation.

First, the number of EEG recordings used in this clinical valida-
tion study of a BSP detection method exceeds the number used in
previous works. We believe that the utilization of EEGs recorded
under various clinical and technical conditions contributes to the
generalizability of the results. The small confidence intervals of
the statistical performance measures confirm that the number of
patients was large enough of this detection problem (see supple-
mentary data of Fürbass et al. (2015b)). The annotation of the data
was done by different reviewers for the EEGs in dataset VIEN and
dataset MGH. Although this may be criticized as problematic, the
diverse educational backgrounds of reviewers acts as additional
randomization which is generally considered a positive feature.
Morphologies of BSP are an especially widely discussed topic in lit-
erature as different anesthetics agents and different pathological
conditions lead to wide variations in the duration of inter burst
intervals and amplitudes (see Section 1), and in the character of
activity within bursts. Despite the quite general definition of BSP
in the critical care EEG terminology (Hirsch et al., 2013) Zschocke
and Hansen (2011) defines three basic types of BSP based on clin-
ical observations. The inter-rater agreement of j = 0.71 for a com-
monly generalized and prolonged EEG pattern like BSP confirms
uncertainties in the visual analysis of these patterns.

The EEGs of dataset VIEN were recorded prospectively for the
work presented in Herta et al. (2015). The detection performance
shows high values for sensitivity and specificity of 92% and 85%
which we interpret as an excellent result for a fully automatic
detection method. The large percentage of EEG segments without
burst suppression help to reduce the confidence interval of the
specificity (4% for SE vs. 3% for SP in dataset VIEN + MGH). The
result of the j agreement between human reviewers and the auto-
matic method is more diverse. The highest agreement could be
measured between reviewers JH and JK with 0.71 where the high
number of segments without burst suppression have a strong bias
on this value. Comparing the results of the automatic method to
these reviewers resulted in j values of 0.56 and 0.47 which is sig-
nificantly lower (p < 0.05) but with an acceptable absolute value.
The patient wise j agreement between the reviewers BW and
MS was 0.57 with outliers of 0.05 and 0.95. We like to emphasize
that the j value of the human annotations in dataset MGH is based
on annotations of separate burst and suppression events which
holds more detailed information then the annotations of one-
minute segments for dataset VIEN. The lower j value of annota-
tions in dataset MGH compared to the j value of annotations in
dataset VIEN is therefore based on differences in the time resolu-
tion during review. The agreement of the automatic method in
dataset MGH could only be measured on the combined annotations
of BW and MS and showed a j value 0.62. This data supports the
thesis that automatic detection of BSP can be done with high sen-
sitivity and specificity and at a level of agreement similar to that of
two human experts.

This work thoroughly investigates the spatial coverage of BSP
with respect to the utilized electrode system. EEG settings with
few channels are commonly used to monitor sedation depth and
do not require solutions to multi-channel issues of automatic eval-
uation. The full 10–20 electrode system is used to monitor criti-
cally ill patients with suspected seizures to increase the
detection sensitivity for focal patterns of brain activity in the
EEG. Lateralized burst suppression or bilateral asynchronous burst
suppression can only be properly analyzed by computer methods
that allow for BSP with a reduced spatial profile. Another
frequently observed issue is that human reviewers tend to recog-
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nize patterns based on clear cut activity seen in very short time
intervals or in a few channels and by extrapolation of this subjec-
tive opinion to a more stretched time–channel area. EEG activity
like BSP can show altered level of amplitudes over channels that
forces the computer method to detect the activity based on the
more pronounced EEG channels alone. We are convinced that both
reasons explain the fact that our presented computer method
needed to allow detections of BSP with an electrode coverage as
low as 40%. Further experiments on these settings have shown that
by increasing this value to 50% the sensitivity decreased by approx-
imately 10%.

In contrast, automatic detection of spatially limited patterns
will reduce the specificity of the detection result in general, by
causing a reduced signal-to-noise ratio. As we pointed out in
Section 1, the a priori reduction of EEG artifacts with the PureEEG
method is used by our detection system. The experimental deacti-
vation of this pre-processing step resulted in decreased specificity
and sensitivity, which is explained by the raised level of artifacts
that trigger detection as well as artifacts that resemble physiolog-
ical EEG patterns.

Another contribution of this work is the ability to distinguish
between burst suppression patterns and periodic patterns auto-
matically. The critical care EEG terminology of the ACNS (Hirsch
et al., 2013) clearly defines these two types of patterns. Periodic
and burst suppression patterns may occur in the same patient as
reported for some patients with coma following cardiac arrest
(Hofmeijer et al., 2014). At least three EEGs recorded in this study
exhibited both patterns, as Fig. 1 exemplifies. The clustering
approach of this work is able to combine all EEG activity belonging
to one burst into a single information unit which leads to simple
and robust classification of periodic discharges. Previous reports
of automated burst suppression analysis are based on channels-
wise analysis that results in a feature time series following the
methodology of ‘‘single-channel classification with late integra-
tion” which differs from this work that is based on early integra-
tion of multiple channels (Hunyadi et al., 2011). In summary, the
channel-wise detections of burst suppression events, the combina-
tion with a spatial clustering algorithm and the use of rejection
algorithms for artifacts and periodic patterns represent the key
innovation of this work.

5. Conclusion

We presented a fully automated method for detection of burst
suppression EEG patterns. The detection performance on EEGs
from 88 adult patients from three independent recording sites
showed high sensitivity and specificity, comparable to expert–
expert levels of inter-rater agreement. The method is able to detect
burst suppression patterns even when occurring over limited cor-
tical regions, and is insensitive to EEG artifacts and periodic pat-
terns. In addition the method quantifies the duration of burst
and suppression events and works in real-time. The high detection
performance on prospectively collected data without the need for
patient-specific parameter tuning shows that utilization for clinical
patient monitoring of burst suppression patterns is feasible.
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