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� Automatic seizure detection assessing efficacy of EEG/ECG/EMG signals for seizure documentation.
� Multi-center evaluation including 92 patients with 494 seizures comparing full to reduced montages.
� Using 8 frontal and temporal electrodes will significantly improve conventional seizure reporting.

a b s t r a c t

Objective: This study investigated sensitivity and false detection rate of a multimodal automatic seizure
detection algorithm and the applicability to reduced electrode montages for long-term seizure documen-
tation in epilepsy patients.
Methods: An automatic seizure detection algorithm based on EEG, EMG, and ECG signals was developed.
EEG/ECG recordings of 92 patients from two epilepsy monitoring units including 494 seizures were used
to assess detection performance. EMG data were extracted by bandpass filtering of EEG signals.
Sensitivity and false detection rate were evaluated for each signal modality and for reduced electrode
montages.
Results: All focal seizures evolving to bilateral tonic-clonic (BTCS, n = 50) and 89% of focal seizures (FS,
n = 139) were detected. Average sensitivity in temporal lobe epilepsy (TLE) patients was 94% and 74%
in extratemporal lobe epilepsy (XTLE) patients. Overall detection sensitivity was 86%. Average false
detection rate was 12.8 false detections in 24 h (FD/24 h) for TLE and 22 FD/24 h in XTLE patients.
Utilization of 8 frontal and temporal electrodes reduced average sensitivity from 86% to 81%.
Conclusion: Our automatic multimodal seizure detection algorithm shows high sensitivity with full and
reduced electrode montages.
Significance: Evaluation of different signal modalities and electrode montages paces the way for semi-
automatic seizure documentation systems.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Seizure documentation and quantification represents the pri-
mary outcome measure of epilepsy therapy including antiepileptic
drug treatment, epilepsy surgery, and neurostimulation. Presently,
patients document their seizures using seizure diaries without sys-
tematic and objective validation approach by physicians. Recent
publications showed that manual seizure counting suffers from
underreporting with sensitivities of 50% during day and as low as
30% during night and can therefore be considered as highly unreli-
able (Blachut et al., 2015). This inaccuracy represents a major issue
for the assessment of treatment efficacy including drug trials.
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We propose a semi-automatic system for seizure documenta-
tion and quantification based on computer methods to scan
biomedical signals for epileptic seizures followed by a manual
evaluation of these detections by trained staff. For this application
a low number of sensors should be used to assure patient compli-
ance and to simplify hardware design. On the other hand, data
from ictal events needs to be recorded with a reasonable number
of sensors to allow post-hoc analysis for correct seizure identifica-
tion. A prerequisite for this approach is a wearable electrophysio-
logical hardware setup that can be utilized over long time
periods. Secondly, and with utterly importance, a clinically vali-
dated computer based detection method has to be used. This
method has to ensure high sensitivity and low false detection rates,
to pay off additional efforts of neurophysiological measurements
with numerous EEG electrodes and other sensors.

EEG represents the gold standard in epilepsy diagnosis and to
prove the epileptic nature of seizures which makes it the primary
modality for automatic seizure documentation. Automatic seizure
detection methods based on surface EEG recorded during inpatient
epilepsy monitoring showed high sensitivity in multi-center stud-
ies (Fürbass et al., 2015a; Hopfengärtner et al., 2014). Reduced EEG
electrode sets showed a rapid drop in detection sensitivity for
rhythmic patterns (Herta et al., 2017) which has to be considered
for wearable documentation devices.

ECG can be utilized as another modality for seizure detection.
Epileptic seizures cause an activation of the central autonomic net-
work (CAN) resulting in changes in heart rhythm at seizure onset.
Ictal tachycardia (ITC) represents the most frequent change in
heart rhythm and can be observed in 65–86% of seizures
(Eggleston et al., 2014; Leutmezer et al., 2003). Furthermore, a lar-
ger affected brain area was reported to define the degree and rate
of ITC (Stefanidou et al., 2015). ITC occurs early during seizure evo-
lution and often even precedes EEG changes visible on scalp-EEG
(Leutmezer et al., 2003). The high sensitivity of ITC, its early occur-
rence, and the easy technical setup for ECG measurement makes
this biomarker highly promising for automatic seizure detection
devices.

Other modalities for automatic seizure detection were investi-
gated recently, including methods based on surface EMG
(Beniczky et al., 2016) and motion sensors (Conradsen et al.,
2012) as well as gyroscopic sensors and dermal skin conductance
sensors (Banks et al., 2014).

In this study we present a multimodal automatic seizure detec-
tion method using information from EEG, ECG assessing ictal
tachycardia and EMG measuring ictal tonic muscle activity. We
investigated this method both with a full 10–20 electrode set as
well as a reduced number of EEG electrodes suitable for ambula-
tory settings. We assessed strengths and weaknesses of this
approach in patients with specific seizure and epilepsy types.
2. Methods

2.1. Data

We retrospectively analyzed 92 long-term EEG/ECG/EMG
recordings from two epilepsy monitoring units including at least
21 EEG electrodes and at least one ECG channel. Signed informed
consent was obtained from all patients. We included all available
EEG recordings with one or more epileptic seizure during the
recording period resulting in a total of 11,978 h of data with 494
epileptic seizures of various types (min per patient = 23 h, max
per patient = 547 h). From 92 patients included in our study 55
patients had temporal lobe epilepsy (TLE) and 37 patients had
extratemporal lobe epilepsy (XTLE). Data were recorded with a
Micromed (Veneto, SpA) and an ITmed (Natus Medical Incorpo-
rated) system at a 256 Hz sampling rate using gold-disc electrodes
placed according to the international 10–20 system with addi-
tional temporal electrodes. To mimic the behaviour of prospective
data, digital EEGs were analyzed without manual pre-processing,
data selection or data cutting.

The effect of reduced scalp electrode montages was simulated
by removing electrodes from the digital EEG file before further
analysis. Two different montages with reduced number of elec-
trodes were assessed: the 8 electrode forehead montage includ-
ing electrodes FP1, F7, T7, FP2, F8, T8, FZ, ECG and the 7
electrode posterior montage including electrodes T7, P7, O1, T8,
P8, O2, ECG. Fig. 1 shows standard electrode positions (circles) as
well as electrodes of forehead montage (dashed circles) and elec-
trodes of posterior montage (shaded circles).
2.2. Performance evaluation methodology

Seizures were annotated following standard protocols of the
two epilepsy monitoring units using both clinical and EEG informa-
tion. The first three seizures of each patient were categorized
according to the ILAE operational seizure classification (http://www.
ilae.org/Visitors/Centre/documents/ClassificationSeizureILAE-2016.
pdf) in order to facilitate performance evaluation according to
seizure type. Seizure markers were set based on standard EMU
review procedure using video, EEG, and other clinical information
including manual validation of seizures by an experienced clinical
epileptologists (HS, SP, or CB). Only validated seizure markers were
used to define seizure epochs as basis for assessing detected and
undetected seizures. Each seizure epoch ranged from 30 s before
the clinical seizure marker to 180 s after this marker resulting in
a total 210 s intervals of single seizure epochs.

Our seizure detection algorithm provided both time points and
modality of detection. Time points of detected events were com-
pared to the visually identified seizure epochs. Seizure epochs
were defined as true positive (TP) if at least one detection occurred
within the epoch time range. Detections outside of seizure epochs
were defined as false positives (FP). Seizure epochs without a
matching detection were defined as false negative (FN). For assess-
ment of detection performance according to seizure types we dis-
tinguished between focal seizures (FS group) and focal seizures
evolving to bilateral tonic-clonic (BTCS group). The first three sei-
zure epochs including seizure type annotations in each patient
were evaluated, consecutive seizure epochs and detections over-
lapping these epochs were ignored. Patients with at least one sei-
zure of a certain type were included in the corresponding seizure
type group. Patients having two different seizure types were
included in both seizure type groups.

Sensitivity (SE) was defined as the ratio between the number of
true positives (#TP) and the number of all seizures (#TP + #FN) and
was calculated for each patient. False detection rate was defined as
the number of false detections per 24 h (FD/24 h).

A paired t-test was used as test statistic between performance
results of two detector types or electrode sets.
2.3. Computer algorithm

The computer algorithm detects seizures using EEG, surface
EMG, and ECG signals that were recorded using scalp EEG and
chest ECG electrodes. Fig. 1 gives an overview of the detection
system.

EEG is able to pick up pathologic brain activity by showing
rhythmic signal components, but patient movements and loose
electrode contacts can cause signal artefacts with similar morphol-
ogy. Before applying the EEG seizure detection algorithm artefacts
were removed applying PureEEG, a fully automatic artefact

http://www.ilae.org/Visitors/Centre/documents/ClassificationSeizureILAE-2016.pdf
http://www.ilae.org/Visitors/Centre/documents/ClassificationSeizureILAE-2016.pdf
http://www.ilae.org/Visitors/Centre/documents/ClassificationSeizureILAE-2016.pdf
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Fig. 1. Multimodal Seizure Detection System: Signal modalities EEG, surface EMG, and ECG are derived from scalp EEG and chest ECG leads. For each modality, seizure specific
features of the current time point are compared to past values to detect an increasing seizure likelihood called degradation (A) and for real time seizure classification (B).
Detection events were defined as logical AND of conditions A and B. For EEG the increasing rhythmic signal amplitude (A) with a high absolute amplitude compared to an
average EEG spectrum (B) triggered detections; for EMG an elevated Line Length (LL) compared to baseline (LL_ref) (A) and steady increasing tonic activity for more than 5 s
with high absolute values (B) triggered detections; for ECG elevated heart rate (HR) compared to baseline (A) and increased heart rate above 100 beats per minute (bpm) with
a high cardiac sympathetic index of 100 beats (CSI100) (B) triggered detections.
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removal method (Hartmann et al., 2014). A rhythmic pattern
detection algorithm described previously (Fürbass et al., 2015b;
Herta et al., 2015) was then used to detect rhythmic activity
between 1.8 and 12.5 Hz and to measure amplitude and frequency
of these patterns. Amplitude baseline was estimated using the 50%
percentile of all rhythmic patterns that occurred in the previous
four minutes. Rhythmic patterns that were classified as ictal EEG
patterns (Fig. 1, (B)) and that had a 40% higher amplitude com-
pared to EEG baseline were defined as seizure detections.

Automatic seizure detection on EMG was based on the occur-
rence of sustained and excessive EMG activity. EMG signals were
extracted from data recorded on EEG electrodes by bandpass filter-
ing the signals between 30 and 60 Hz. Signal strength was quanti-
fied using the line length method defined as the sum of distances
between each consecutive data sample in non-overlapping 0.5 s
windows. Seizure events were defined as high absolute line length
values (LL), a steady increase over 5 s, and a 500% increase com-
pared to maximum line length in a four minute baseline window
(LL_ref).
ECG signals from a single chest electrode were used for measur-
ing heart rate and for automatic detection of ictal tachycardia. We
defined ictal tachycardia as a heart rate above 100 beats per min-
ute (bpm). The detection algorithm first resampled ECG signals to
500 Hz and then high pass filtered the signal with a cut off fre-
quency of 8 Hz to remove T wave components. Then a detection
algorithm designed to find periodic patterns scanned for QRS com-
plexes (Fürbass et al., 2015b). The exact time position of R peak
was defined at the maximum of the QRS complex. Consecutive R
to R time intervals (RR intervals) of the last 10 s were used to
define the average bpm at each time point. Cardiac baseline activ-
ity was defined as average heart rate during four minutes before
the current time point. To differentiate physiologic from ictal activ-
ity the modified cardiac sympathetic index based on previous 100
RR intervals (CSI100) was calculated (Jeppesen et al., 2014) as fol-
lows: given the Lorenz plot of RR intervals the longitudinal length
(L) and the transversal length (T) was estimated as four times the
standard deviation. The value of CSI100 was then calculated by
L2 divided by T. An elevated heart rate of more than 100 bpm
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and a minimum increase of 30% compared to baseline as well as a
CSI100 value above 5 defined a seizure event.

The logical OR combination of the three detection modalities
was used for evaluation of the overall system performance. Detec-
tion results can be obtained in real time with less than 10% CPU
usage of a standard PC; or equivalently a 24 h EEG recording needs
approximately 2 h of calculation time. The algorithmwill be part of
the encevis EEG software package (www.encevis.com).
3. Results

3.1. Detection performance

Assessment of overall detection performance in 92 patients
including 494 epileptic seizures resulted in 86% sensitivity (SE)
and an average of 16.5 false detections per 24 h (FD/24 h). Evalua-
tion of TLE patients including 284 epileptic seizures resulted in 94%
SE and 12.8 FD/24 h, XTLE patients (n = 37) including 210 seizures
showed a sensitivity of 74% and 22.2 FD/24 h. Evaluation according
to seizure types involved a maximum of 3 epileptic seizures per
patient (see Section 2.2). The focal seizure (FS) group included 64
patients with 139 seizures and resulted in 89% SE and 16.4
FD/24 h. On the other hand, evaluation of 35 patients with 50 focal
seizures evolving to bilateral tonic-clonic seizures (BTCS) resulted
in 100% SE and 14.1 FD/24 h.

ECG based seizure detection resulted in low sensitivities (TLE:
40%, XTLE: 8%, FS: 27%, BTCS: 43%). EMG based seizure detection
reached high sensitivity for BTCS (93%) but low sensitivities for
other patients and seizure types (TLE: 25%, XTLE: 35%, FS: 8%).
EEG based seizure detection showed high sensitivities in general
(TLE: 91%, XTLE: 74%, FS: 88%, BTCS: 97%).

Electrode set reduction using a 8 electrode forehead montage
including frontal and temporal as well as ECG electrodes (FP1, F7,
T7, FP2, F8, T8, FZ, ECG) resulted only in statistically non-
significant lower detection sensitivity (p > 0.05) for XTLE (�6%
SE), FS (�5% SE), and BTCS (�3% SE). Significant reduction by
�5% was found when all patients and seizures were used (group
ALL) with p = 0.02 and for TLE (�6% SE) with p = 0.01.
Table 1
Detection performance of our automatic seizure detection algorithm based on data of a 22
percent (SE (%)) and false detections per 24 h (FD/24 h) are shown for five different evalu
respective epilepsy types, FS (focal seizure) and BTCS (focal seizures evolving to bilateral to
of seizures (nSz) are shown for each evaluation group. Combined detector (COMB) perform

Automatic seizure detection performance

ALL
n = 92 nSz = 494

TLE
n = 55 nSz = 284

SE (%) FD/24 h SE (%) FD/24 h

22 electrode montage
EEG 84 15.6 91 11.9
ECG 27 0.6 40 0.6
EMG 29 0.4 25 0.3
EEG + EMG 84 16.0 92 12.2
EEG + ECG + EMG (COMB) 86 16.5 94 12.8

8 electrode forehead montage
EEG 79 11.5 87 8.5
ECG 27 0.6 40 0.6
EMG 34 1.6 29 1.3
EEG + EMG 81 12.1 90 9.1
EEG + ECG + EMG (COMB) 81 13.5 90 10.3

7 electrode posterior montage
EEG 68 4.2 76 3.4
ECG 27 1.2 40 0.6
EMG 28 1.2 23 1.2
EEG + EMG 69 5.4 77 4.5
EEG + ECG + EMG (COMB) 74 6.0 84 5.1
Reduction to 7 electrode posterior montage including tempo-
ral and occipital as well as ECG electrodes (T7, P7, O1, T8, P8, O2,
ECG) showed even lower detection sensitivity which was non-
significant (p > 0.05) only for patients with BTCS (�6% SE), whereas
ALL (�12% SE), TLE (�10% SE), XTLE (�15% SE), and FS (�11% SE)
showed a significant reduction (p < 0.05).

Table 1 summarizes the results separate for different detection
modalities (EEG, ECG, EMG), combination of modalities (EEG
+ EMG, COMB defined as EEG + ECG + EMG) based on data of five
different evaluation groups (ALL, TLE, XTLE, FS, BTCS). Detection
performance using the full 10–20 electrode set including 21 EEG
and 1 ECG electrode (22 electrode montage) as well as the 8 elec-
trode forehead montage and the 7 electrode posterior montage are
shown.

Fig. 2 visualizes detection performance by receiver operating
characteristic plots (ROC) for full 22 electrode and the 8 electrode
forehead montage. The 95% confidence intervals for sensitivity val-
ues are shown using vertical error bars of the COMB detector. Com-
paring COMB performance to EEG + EMG combination shows the
added value of an ECG based detection system.

3.2. Detection delays

Time delay of seizure detections are of minor importance to our
proposed semi-automatic seizure documentation approach but
will be in focus of ambulatory seizure alarming devices. In this sec-
tion we elaborate on detection delays to get more insights into this
closely related and important topic. Comparing time delays of
automatically calculated detections to visually selected seizure
markers indicated a correlation of average delays with detection
modalities. Fig. 3 shows boxplots of detection delays in seconds
of all detected seizures based on the full 22 electrode montage.
ECG based detections had a median delay of only 19 s (min = �22 s,
max = 75 s) followed by EEG based detections (median = 26 s,
min = �10 s, max = 165 s), and surface EMG based detections
(median = 45 s, min = 6 s, max = 141 s). Negative delays indicate
detection of seizures prior to visual identification on scalp-EEG or
video, and were found in 16 seizures (ECG = 12, EEG = 4, EMG =
0 seizures). In this work the detection horizon prior to visual
electrode montage and two reduced electrode montages (rows). Average sensitivity in
ation groups (columns). Group ALL includes all patients, TLE and XTLE patients with
nic-clonic) patients with respective seizure types. Number of patients (n) and number
ance was defined as the combination of EEG, ECG, and surface EMG based detections.

XTLE
n = 37 nSz = 210

FS
n = 64 nSz = 139

BTCS
n = 35 nSz = 50

SE (%) FD/24 h SE (%) FD/24 h SE (%) FD/24 h

74 21.2 88 15.5 97 13.3
8 0.6 27 0.7 43 0.4
35 0.6 8 0.4 93 0.5
74 21.7 88 15.9 100 13.8
74 22.2 89 16.4 100 14.1

67 16 82 11 97 11.2
8 0.6 27 0.7 43 0.4
41 2.1 17 1.4 96 2.4
67 16.6 84 11.6 97 11.5
68 18.3 84 12.8 97 13.7

55 5.4 72 4.0 94 3.8
8 0.6 27 0.7 43 0.4
35 1.5 8 1.1 93 1.7
58 6.9 73 5.1 94 5.4
59 7.4 78 5.7 94 5.8

http://www.encevis.com


Fig. 2. Detection performance by means of sensitivity and false detections per 24 h (FD/24 h) shown in ROC plots. The left upper corner of each plot defines the theoretical
optimum point with 100% sensitivity and no false detections. Results for our seizure algorithm based on different modalities (EEG, EMG, ECG) and their logical OR
combination (COMB) are shown. Data of the 22 electrode montage (boxes) and the 8 electrode forehead montage (crosses) is shown. Both montages include the same ECG
data wherefore ECG based detection performance results in the same values (box overlaid with cross labelled ECG). Vertical error bars on the COMB values indicate the 95%
confidence intervals of sensitivities. All focal seizures evolving to bilateral tonic-clonic (BTCS) are detected with the 22 electrode montage and 97% of BTCS using a reduced
forehead montage. The ECG based detector stays below 43% sensitivity in all evaluation groups with false alarm rates below 0.7 FD/24 h.
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identification on scalp-EEG or video was limited to 30 s because of
the definition of the seizure epoch (see Section 2.2).

Fig. 3 shows that some detections triggered by the ECG or EEG
signal even occurred before clinical onset (whiskers include the
minimum and maximum value). Median delays of ECG (19 s),
EEG (26 s), and EMG (45 s) detections show that ictal ECG features
appear earlier in time compared to EEG based features (although
less frequent, see Fig. 2), and that surface EMG has the largest med-
ian delay.
4. Discussion

Automatic seizure documentation for outpatients has to proof
high sensitivity and needs post-hoc manual evaluation for reliable
seizure identification. Low false detection rates are mandatory to
reduce workload of manual evaluation procedure. We present a
multimodal seizure detection algorithm working in real time that
is able to detect epileptic seizures with high sensitivity using
EEG, EMG, and ECG signals.

Our results show very high detection sensitivity of 94% for TLE
and overall detection sensitivity of 86% using the 22 electrode
montage (21 EEG electrodes plus one ECG). Furthermore, the algo-
rithm was able to detect all focal seizures evolving to bilateral
tonic-clonic (n = 50). Therefore, our automatic seizure detection
system potentially increases sensitivity of seizure documentation
compared to manual procedures in all patient and seizure groups.

Reduced electrode montages for automatic seizure documenta-
tion assures patient compliance in long-term outpatient settings. E.
g. omitting posterior electrodes will increase sleep comfort and
therefore positively influences EEG quality of nocturnal events.
Furthermore, setup time of ambulatory EEG is a major cost factor
besides data evaluation which is reduced by a factor of three when
using 7 EEG electrodes only. We found lower sensitivities com-
pared to the full 10–20 electrode montage (forehead �5% SE, pos-
terior �12% SE). Based on our results we conclude that the 8
electrode forehead montage is most beneficial for this application.
Similar montages showed high sensitivities for emergency and
prehospital care application (Jakab et al., 2014). Also our previous
work using EEG from intensive care unit patients showed promis-
ing results of automatic pattern detection based on forehead EEG
montages (Herta et al., 2017).

False detection rates of reduced electrode montages dropped
down only by �3 FD/24 h for forehead but by �10 FD/24 h for pos-
terior montages showing a positive correlation between the num-
ber of electrodes and false detection rate that is more pronounced
for posterior electrodes.

Results therefore encourage the use of reduced electrode sets
based on frontal and temporal electrodes for long-term seizure
documentation. Even XTLE patients showing the lowest sensitivity
in our study (68% SE), true seizures counts can be significantly
improved as compared to manual seizure counting sensitivity of
50% (Blachut et al., 2015).

Reduction of EEG electrodes will negatively influence visual
inspection and seizure validation. It is important to limit electrode
reduction to maintain interpretability of the EEG. We therefore
avoid electrode reduction below 6 EEG electrodes or sole use of
non-EEG signals which would not allow seizure validation at all.

We found significantly lower sensitivities for XTLE patients as
compared to TLE patients which can be explained by differences
in ictal EEG patterns. Visual analysis of false negatives in XTLE
showed that these seizures include low amplitude beta, gamma
activity, or high amplitude muscle artefacts but only marginal
rhythmic activity. The high rate of interictal abnormal EEG activity
in these patients is the reason for the high false detection rate of 22
FD/24 h in this evaluation group.
In our study absolute values of ECG based seizure detections
were low (TLE: 40%, XTLE: 8%, FS: 27%, BTCS: 43%). These results
are in good agreement with previous publications (Eggleston
et al., 2014). Discrepancies as compared to other studies
(Leutmezer et al., 2003) can be explained by differences in the def-
inition of ictal tachycardia (Eggleston et al., 2014).

Added value of ECG based seizure detection is marginal when
full 10–20 EEG is available. Data shows that sensitivity increases
by only a few percent or not at all when adding ECG based detec-
tions to 21 electrode EEG based detections (TLE: +2%, XTLE: 0%, FS:
+1%, SGTC: 0%). Similar results were found for detections based on
8 electrode forehead montage. ECG based detections gain impor-
tance only for the less sensitive 7 electrode posterior montage
(ALL: +5%, TLE: +7%, XTLE: +1%, FS: +5%, GTCS: 0%). This shows that
low sensitive EEG setups can partly recover sensitivity by using
other signal modalities like ECG.

EMG signals were extracted from EEG data via a bandpass filter.
An important point of this work was to reduce effort of the electro-
physiological setup. Furthermore, dedicated EMG signals were not
available in the data of this work. Detection sensitivity for focal sei-
zures evolving to bilateral tonic-clonic solely using derived EMG
signals was very high (93%) and an additional surface EMG sensor
is therefore avoidable. A further advantage of EEG electrode based
EMG detection is that recorded EEG data can be used to validate
the EMG based seizure alarms which is impossible with accelerom-
eter data alone.

Accelerometer sensors are able to detect clonic or tonic-clonic
seizures with high sensitivity. Detection performance of 66% sensi-
tivity and 1.1 false detections per night was reached (Van de Vel
et al., 2016). Combination of accelerometer data and electrodermal
activity (EDA) reached 89% sensitivity and 93% specificity on data
of 8 patients (Heldberg et al., 2015). In this work EMG based sei-
zure detections reached 93% for SGTC and showed a shorter detec-
tion delay than accelerometer based detectors.

Comparing detection performance of the presented multimodal
seizure detection algorithm to the online seizure detection method
EpiScan (Fürbass et al., 2015a) shows that a higher sensitivity for
TLE (94–83%) and XTLE patients (74–64%) but also a higher false
detection rate (TLE 12.8–6.7, XTLE: 22.2–7.3 FD/24 h) can be
reached. On the other hand comparing results of our study to
results of a study published by Hopfengärtner et al. (2014) shows
higher sensitivity for TLE (94–89%) but lower sensitivity for XTLE
(74–77%). False alarm rate reported in (Hopfengärtner et al.,
2014) is lower compared to results of our study (12.8–4.5
FD/24 h). The higher sensitivity of the multimodal seizure detec-
tion algorithm and low CPU calculation time fit the use case of
semi-automatic seizure documentation. In turn, the very low false
alarm rate of EpiScan and similar algorithms is well suited for trig-
gering acoustic alarms for patient surveillance.

In this work we presented an automatic seizure detection algo-
rithm and results of retrospective data analysis. We are fully aware
that a complete seizure documentation infrastructure has to
include wearable electrode systems for monitoring, storing
detected seizure periods, and IT infrastructure as well as software
for transmitting and reviewing stored seizure data for final
validation.
5. Conclusion

We presented an automatic multimodal seizure detection algo-
rithm for long-term seizure documentation. Evaluation of detec-
tion performance on 92 long-term EEG/ECG/EMG recordings from
two epilepsy monitoring units including 11,978 h of data and
494 seizures resulted in high detection sensitivity. The effect of dif-
ferent signal modalities on detection performance and detection
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delay was analyzed in detail. The effect of reduced electrode mon-
tages on detection performance showed the superiority of frontal
and temporal EEG electrodes for automatic seizure detection. The
work showed that improved long-term seizure documentation is
possible using automatic seizure detection algorithms based on
only 8 frontal and temporal as well as one ECG electrode. We con-
clude that using semi-automatic seizure documentation will
improve seizure documentation in general and justifies the addi-
tional electrophysiological effort.
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